1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
| #include <bits/stdc++.h>
#pragma optimization_level 3 #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math,O3") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx") #pragma GCC optimize("Ofast") #pragma GCC target("avx,avx2,fma") #pragma GCC optimization ("unroll-loops")
using namespace std;
struct PairHash {inline std::size_t operator()(const std::pair<int, int> &v) const { return v.first * 31 + v.second; }};
#define Code ios_base::sync_with_stdio(false); #define By ios::sync_with_stdio(0); #define Sumfi cout.tie(NULL);
using ll = long long; using ld = long double; using ull = unsigned long long;
const ld PI = acosl(-1.0); const ll INF = 1e18; const ld EPS = 1e-9; const ll MAX_N = 101010; const ll mod = 998244353;
typedef pair<int,int> pii; typedef pair<ll,ll> pll; typedef vector<pll> vpll; typedef array<int,3> ai3; typedef array<ll,3> all3; typedef array<ll,4> all4; typedef array<ll,5> all5; typedef vector<all3> vall3; typedef vector<all4> vall4; typedef vector<all5> vall5; typedef pair<ld, ld> pld; typedef vector<pld> vpld; typedef vector<ld> vld; typedef vector<ll> vll; typedef vector<ull> vull; typedef vector<vll> vvll; typedef vector<int> vi; typedef vector<bool> vb; typedef deque<ll> dqll; typedef deque<pll> dqpll; typedef pair<string, string> pss; typedef vector<pss> vpss; typedef vector<string> vs; typedef vector<vs> vvs; typedef unordered_set<ll> usll; typedef unordered_set<pll, PairHash> uspll; typedef unordered_map<ll, ll> umll; typedef unordered_map<pll, ll, PairHash> umpll;
#define precision(x) cout<<fixed;cout.precision(x); #define rep(i,m,n) for(ll i=m;i<n;i++) #define rrep(i,m,n) for(ll i=n;i>=m;i--) #define all(a) begin(a), end(a) #define rall(a) rbegin(a), rend(a) #define ZERO(a) memset(a,0,sizeof(a)) #define MINUS(a) memset(a,0xff,sizeof(a)) #define INF(a) memset(a,0x3f3f3f3f3f3f3f3fLL,sizeof(a)) #define ASCEND(a) iota(all(a),0) #define sz(x) ll((x).size()) #define BIT(a,i) ((a>>i)&1) #define BITSHIFT(a,i,n) (((a<<i) & ((1ll<<n) - 1)) | (a>>(n-i))) #define MAXBIT(a) (64ll - __builtin_clzll(a) - 1ll) #define pyes cout<<"YES\n"; #define pno cout<<"NO\n"; #define endl "\n" #define pneg1 cout<<"-1\n"; #define ppossible cout<<"Possible\n"; #define pimpossible cout<<"Impossible\n"; #define TC(x) cout<<"Case #"<<x<<": "; #define X first #define Y second
template <typename T> void print(T &&t) { cout << t << "\n"; } template<typename T> void printv(vector<T>v){ll n=v.size();rep(i,0,n){cout<<v[i];if(i+1!=n)cout<<' ';}cout<<endl;} template<typename T> void printvv(vector<vector<T>>v){ll n=v.size();rep(i,0,n)printv(v[i]);} template<typename T> void printvln(vector<T>v){ll n=v.size();rep(i,0,n)cout<<v[i]<<endl;} void fileIO(string in = "input.txt", string out = "output.txt") {freopen(in.c_str(),"r",stdin); freopen(out.c_str(),"w",stdout);} void readf() {freopen("", "rt", stdin);} template <typename... T> void in(T &...a) { ((cin >> a), ...); } template<typename T> void readv(vector<T>& v){rep(i,0,sz(v)) in(v[i]);} template<typename T, typename U> void readp(pair<T,U>& A) {cin>>A.first>>A.second;} template<typename T, typename U> void readvp(vector<pair<T,U>>& A) {rep(i,0,sz(A)) readp(A[i]); } template<typename T> void readvall(vector<T>& v) {rep(i,0,sz(v)) rep(j,0,sz(v[i])) in(v[i][j]);} template<typename T> void readvv(vector<vector<T>>& A) {rep(i,0,sz(A)) readv(A[i]);}
struct Combination { vll fac, inv; ll n, MOD;
ll modpow(ll n, ll x, ll MOD = mod) { if(!x) return 1; ll res = modpow(n,x>>1,MOD); res = (res * res) % MOD; if(x&1) res = (res * n) % MOD; return res; }
Combination(ll _n, ll MOD = mod): n(_n + 1), MOD(MOD) { inv = fac = vll(n,1); rep(i,1,n) fac[i] = fac[i-1] * i % MOD; inv[n - 1] = modpow(fac[n - 1], MOD - 2, MOD); rrep(i,1,n - 2) inv[i] = inv[i + 1] * (i + 1) % MOD; }
ll fact(ll n) {return fac[n];} ll nCr(ll n, ll r) { if(n < r or n < 0 or r < 0) return 0; return fac[n] * inv[r] % MOD * inv[n-r] % MOD; } };
struct Matrix { ll r,c,MOD; vvll matrix; Matrix(ll r, ll c, ll v = 0, ll MOD = mod): r(r), c(c), matrix(vvll(r,vll(c,v))), MOD(MOD) {} Matrix(vvll m, ll MOD = mod) : r(sz(m)), c(sz(m[0])), matrix(m), MOD(MOD) {}
Matrix operator*(const Matrix& B) const { Matrix res(r, B.c, 0,MOD); rep(i,0,r) rep(j,0,B.c) rep(k,0,B.r) { res.matrix[i][j] = (res.matrix[i][j] + matrix[i][k] * B.matrix[k][j] % MOD) % MOD; } return res; }
Matrix copy() { Matrix copy(r,c,0,MOD); copy.matrix = matrix; return copy; }
ll get(ll y, ll x) { return matrix[y][x]; }
Matrix pow(ll n) { assert(r == c); Matrix res(r,r, 0,MOD); Matrix now = copy(); rep(i,0,r) res.matrix[i][i] = 1; while(n) { if(n & 1) res = res * now; now = now * now; n /= 2; } return res; }
ll det() { if(r == 1) return matrix[0][0]; if(r == 2) return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0]; ll res = 0; rep(p,0,c) { Matrix mat(c-1,c-1); rep(i,1,r) rep(j,0,c) { if(j == p) continue; mat.matrix[i][j - (j >= p)] = matrix[i][j]; } res += matrix[0][p] * (p & 1 ? -1 : 1) * mat.det(); } return res; } };
template <typename T> struct Point { T y,x; Point(T y, T x) : y(y), x(x) {} Point(pair<T,T> p) : y(p.first), x(p.second) {} Point() {} void input() {cin>>y>>x;} friend ostream& operator<<(ostream& os, const Point<T>& p) { os<<p.y<<' '<<p.x<<'\n'; return os;} Point<T> operator+(Point<T>& p) {return Point<T>(y + p.y, x + p.x);} Point<T> operator-(Point<T>& p) {return Point<T>(y - p.y, x - p.x);} Point<T> operator*(ll n) {return Point<T>(y*n,x*n); } Point<T> operator/(ll n) {return Point<T>(y/n,x/n); } bool operator==(const Point<T> &a) {return x == a.x && y == a.y;} bool operator<(const Point &other) const {if (x == other.x) return y < other.y;return x < other.x;} Point<T> rotate(Point<T> center, ld angle) { ld si = sin(angle * PI / 180.), co = cos(angle * PI / 180.); ld y = this->y - center.y; ld x = this->x - center.x;
return Point<T>(y * co - x * si + center.y, y * si + x * co + center.x); } ld distance(Point<T> other) { T dy = abs(this->y - other.y); T dx = abs(this->x - other.x); return sqrt(dy * dy + dx * dx); }
T norm() { return x * x + y * y; } };
template<typename T> struct Line { Point<T> A, B; Line(Point<T> A, Point<T> B) : A(A), B(B) {} Line() {}
void input() { A = Point<T>(); B = Point<T>(); A.input(); B.input(); }
T ccw(Point<T> &a, Point<T> &b, Point<T> &c) { T res = a.x * b.y + b.x * c.y + c.x * a.y; res -= (a.x * c.y + b.x * a.y + c.x * b.y); return res; }
bool isIntersect(Line<T> o) { T p1p2 = ccw(A,B,o.A) * ccw(A,B,o.B); T p3p4 = ccw(o.A,o.B,A) * ccw(o.A,o.B,B); if (p1p2 == 0 && p3p4 == 0) { pair<T,T> p1(A.y, A.x), p2(B.y,B.x), p3(o.A.y, o.A.x), p4(o.B.y, o.B.x); if (p1 > p2) swap(p2, p1); if (p3 > p4) swap(p3, p4); return p3 <= p2 && p1 <= p4; } return p1p2 <= 0 && p3p4 <= 0; }
pair<bool,Point<ld>> intersection(Line<T> o) { if(!this->intersection(o)) return {false, {}}; ld det = 1. * (o.B.y-o.A.y)*(B.x-A.x) - 1.*(o.B.x-o.A.x)*(B.y-A.y); ld t = ((o.B.x-o.A.x)*(A.y-o.A.y) - (o.B.y-o.A.y)*(A.x-o.A.x)) / det; return {true, {A.y + 1. * t * (B.y - A.y), B.x + 1. * t * (B.x - A.x)}}; }
pair<ld, ld> formula() { T y1 = A.y, y2 = B.y; T x1 = A.x, x2 = B.x; if(y1 == y2) return {1e9, 0}; if(x1 == x2) return {0, 1e9}; ld a = 1. * (y2 - y1) / (x2 - x1); ld b = -x1 * a + y1; return {a, b}; } };
template<typename T> struct Circle { Point<T> center; T radius; Circle(T y, T x, T radius) : center(Point<T>(y,x)), radius(radius) {} Circle(Point<T> center, T radius) : center(center), radius(radius) {} Circle() {}
void input() { center = Point<T>(); center.input(); cin>>radius; }
bool circumference(Point<T> p) { return (center.x - p.x) * (center.x - p.x) + (center.y - p.y) * (center.y - p.y) == radius * radius; }
bool intersect(Circle<T> c) { T d = (center.x - c.center.x) * (center.x - c.center.x) + (center.y - c.center.y) * (center.y - c.center.y); return (radius - c.radius) * (radius - c.radius) <= d and d <= (radius + c.radius) * (radius + c.radius); }
bool include(Circle<T> c) { T d = (center.x - c.center.x) * (center.x - c.center.x) + (center.y - c.center.y) * (center.y - c.center.y); return d <= radius * radius; } };
ll __gcd(ll x, ll y) { return !y ? x : __gcd(y, x % y); } all3 __exgcd(ll x, ll y) { if(!y) return {x,1,0}; auto [g,x1,y1] = __exgcd(y, x % y); return {g, y1, x1 - (x/y) * y1}; } ll __lcm(ll x, ll y) { return x / __gcd(x,y) * y; } ll modpow(ll n, ll x, ll MOD = mod) { if(x < 0) return modpow(modpow(n,-x,MOD), MOD-2,MOD); n%=MOD; if(!x) return 1; ll res = modpow(n,x>>1,MOD); res = (res * res) % MOD; if(x&1) res = (res * n) % MOD; return res; }
ll dfs(ll u, ll cnt, vvll& adj, vector<umll>& dp, vll& A) { if(dp[u].count(cnt)) return dp[u][cnt]; ll& res = dp[u][cnt] = cnt * A[u]; if(sz(adj[u])) { vll now; for(auto& v : adj[u]) { ll a = dfs(v,cnt / sz(adj[u]), adj, dp, A); ll b = dfs(v,(cnt + sz(adj[u]) - 1) / sz(adj[u]), adj, dp, A); res += a; now.push_back(b-a); } sort(rall(now)); rep(i,0,cnt % sz(adj[u])) res += now[i]; } return res; } ll solve(vll A, vll P, ll n, ll k) { vvll adj(n); vector<umll> dp(n); rep(i,0,sz(P)) adj[P[i]-1].push_back(i+1); return dfs(0,k,adj,dp,A); } int main() { Code By Sumfi precision(15) ll tc = 1; in(tc); rep(i,1,tc+1) { ll n,k; in(n,k); vll P(n-1), A(n); readv(P), readv(A); print(solve(A,P,n,k)); } return 0; }
|