[LeetCode] Minimum Number of Swaps to Make the Binary String Alternating

1864. Minimum Number of Swaps to Make the Binary String Alternating

Given a binary string s, return the minimum number of character swaps to make it alternating, or -1 if it is impossible.

The string is called alternating if no two adjacent characters are equal. For example, the strings “010” and “1010” are alternating, while the string “0100” is not.

Any two characters may be swapped, even if they are not adjacent.

Read more
[LeetCode] Finding Pairs With a Certain Sum

1865. Finding Pairs With a Certain Sum

You are given two integer arrays nums1 and nums2. You are tasked to implement a data structure that supports queries of two types:

  1. Add a positive integer to an element of a given index in the array nums2.
  2. Count the number of pairs (i, j) such that nums1[i] + nums2[j] equals a given value (0 <= i < nums1.length and 0 <= j < nums2.length).

Implement the FindSumPairs class:

  • FindSumPairs(int[] nums1, int[] nums2) Initializes the FindSumPairs object with two integer arrays nums1 and nums2.
  • void add(int index, int val) Adds val to nums2[index], i.e., apply nums2[index] += val.
  • int count(int tot) Returns the number of pairs (i, j) such that nums1[i] + nums2[j] == tot.
Read more
[LeetCode] Number of Ways to Rearrange Sticks With K Sticks Visible

1866. Number of Ways to Rearrange Sticks With K Sticks Visible

There are n uniquely-sized sticks whose lengths are integers from 1 to n. You want to arrange the sticks such that exactly k sticks are visible from the left. A stick is visible from the left if there are no longer sticks to the left of it.

  • For example, if the sticks are arranged [1,3,2,5,4], then the sticks with lengths 1, 3, and 5 are visible from the left.

Given n and k, return the number of such arrangements. Since the answer may be large, return it modulo 109 + 7.

Read more
[LeetCode] Design Browser History

1472. Design Browser History

You have a browser of one tab where you start on the homepage and you can visit another url, get back in the history number of steps or move forward in the history number of steps.

Implement the BrowserHistory class:

  • BrowserHistory(string homepage) Initializes the object with the homepage of the browser.
  • void visit(string url) Visits url from the current page. It clears up all the forward history.
  • string back(int steps) Move steps back in history. If you can only return x steps in the history and steps > x, you will return only x steps. Return the current url after moving back in history at most steps.
  • string forward(int steps) Move steps forward in history. If you can only forward x steps in the history and steps > x, you will forward only x steps. Return the current url after forwarding in history at most steps.
Read more
[LeetCode] Design Tic-Tac-Toe

348. Design Tic-Tac-Toe

Assume the following rules are for the tic-tac-toe game on an n x n board between two players:

  1. A move is guaranteed to be valid and is placed on an empty block.
  2. Once a winning condition is reached, no more moves are allowed.
  3. A player who succeeds in placing n of their marks in a horizontal, vertical, or diagonal row wins the game.

Implement the TicTacToe class:

  • TicTacToe(int n) Initializes the object the size of the board n.
  • int move(int row, int col, int player) Indicates that player with id player plays at the cell (row, col) of the board. The move is guaranteed to be a valid move.

Follow up:
Could you do better than O(n2) per move() operation?

Read more
[LeetCode] Coin Change 2

518. Coin Change 2

You are given an integer array coins representing coins of different denominations and an integer amount representing a total amount of money.

Return the number of combinations that make up that amount. If that amount of money cannot be made up by any combination of the coins, return 0.

You may assume that you have an infinite number of each kind of coin.

The answer is guaranteed to fit into a signed 32-bit integer.

Read more
[LeetCode] Accounts Merge

721. Accounts Merge

Given a list of accounts where each element accounts[i] is a list of strings, where the first element accounts[i][0] is a name, and the rest of the elements are emails representing emails of the account.

Now, we would like to merge these accounts. Two accounts definitely belong to the same person if there is some common email to both accounts. Note that even if two accounts have the same name, they may belong to different people as people could have the same name. A person can have any number of accounts initially, but all of their accounts definitely have the same name.

After merging the accounts, return the accounts in the following format: the first element of each account is the name, and the rest of the elements are emails in sorted order. The accounts themselves can be returned in any order.

Read more
[LeetCode] Course Schedule

207. Course Schedule

There are a total of numCourses courses you have to take, labeled from 0 to numCourses - 1. You are given an array prerequisites where prerequisites[i] = [ai, bi] indicates that you must take course bi first if you want to take course ai.

For example, the pair [0, 1], indicates that to take course 0 you have to first take course 1.
Return true if you can finish all courses. Otherwise, return false.

Read more
[LeetCode] Find Duplicate File in System

609. Find Duplicate File in System

Given a list paths of directory info, including the directory path, and all the files with contents in this directory, return all the duplicate files in the file system in terms of their paths. You may return the answer in any order.

A group of duplicate files consists of at least two files that have the same content.

A single directory info string in the input list has the following format:

  • “root/d1/d2/…/dm f1.txt(f1_content) f2.txt(f2_content) … fn.txt(fn_content)”

It means there are n files (f1.txt, f2.txt … fn.txt) with content (f1_content, f2_content … fn_content) respectively in the directory “root/d1/d2/…/dm”. Note that n >= 1 and m >= 0. If m = 0, it means the directory is just the root directory.

The output is a list of groups of duplicate file paths. For each group, it contains all the file paths of the files that have the same content. A file path is a string that has the following format:

  • “directory_path/file_name.txt”
Read more
[LeetCode] Flatten Nested List Iterator

341. Flatten Nested List Iterator

You are given a nested list of integers nestedList. Each element is either an integer or a list whose elements may also be integers or other lists. Implement an iterator to flatten it.

Implement the NestedIterator class:

  • NestedIterator(List nestedList) Initializes the iterator with the nested list nestedList.
  • int next() Returns the next integer in the nested list.
  • boolean hasNext() Returns true if there are still some integers in the nested list and false otherwise.
Read more