[LeetCode] Minimum Absolute Sum Difference

1818. Minimum Absolute Sum Difference

You are given two positive integer arrays nums1 and nums2, both of length n.

The absolute sum difference of arrays nums1 and nums2 is defined as the sum of |nums1[i] - nums2[i]| for each 0 <= i < n (0-indexed).

You can replace at most one element of nums1 with any other element in nums1 to minimize the absolute sum difference.

Return the minimum absolute sum difference after replacing at most one element in the array nums1. Since the answer may be large, return it modulo 109 + 7.

|x| is defined as:

  • x if x >= 0, or
  • -x if x < 0.
Read more
[LeetCode] Non-decreasing Array

665. Non-decreasing Array

Given an array nums with n integers, your task is to check if it could become non-decreasing by modifying at most one element.

We define an array is non-decreasing if nums[i] <= nums[i + 1] holds for every i (0-based) such that (0 <= i <= n - 2).

Read more
[LeetCode] Walking Robot Simulation

874. Walking Robot Simulation

A robot on an infinite XY-plane starts at point (0, 0) facing north. The robot can receive a sequence of these three possible types of commands:

  • -2: Turn left 90 degrees.
  • -1: Turn right 90 degrees.
  • 1 <= k <= 9: Move forward k units, one unit at a time.

Some of the grid squares are obstacles. The ith obstacle is at grid point obstacles[i] = (xi, yi). If the robot runs into an obstacle, then it will instead stay in its current location and move on to the next command.

Return the maximum Euclidean distance that the robot ever gets from the origin squared (i.e. if the distance is 5, return 25).

Note:

  • North means +Y direction.
  • East means +X direction.
  • South means -Y direction.
  • West means -X direction.
Read more
[LeetCode] Walking Robot Simulation II

2069. Walking Robot Simulation II

A width x height grid is on an XY-plane with the bottom-left cell at (0, 0) and the top-right cell at (width - 1, height - 1). The grid is aligned with the four cardinal directions (“North”, “East”, “South”, and “West”). A robot is initially at cell (0, 0) facing direction “East”.

The robot can be instructed to move for a specific number of steps. For each step, it does the following.

  1. Attempts to move forward one cell in the direction it is facing.
  2. If the cell the robot is moving to is out of bounds, the robot instead turns 90 degrees counterclockwise and retries the step.

After the robot finishes moving the number of steps required, it stops and awaits the next instruction.

Implement the Robot class:

  • Robot(int width, int height) Initializes the width x height grid with the robot at (0, 0) facing “East”.
  • void step(int num) Instructs the robot to move forward num steps.
  • int[] getPos() Returns the current cell the robot is at, as an array of length 2, [x, y].
  • String getDir() Returns the current direction of the robot, “North”, “East”, “South”, or “West”.
Read more
[LeetCode] 370. Range Addition

370. Range Addition

You are given an integer length and an array updates where updates[i] = [startIdxi, endIdxi, inci].

You have an array arr of length length with all zeros, and you have some operation to apply on arr. In the ith operation, you should increment all the elements arr[startIdxi], arr[startIdxi + 1], …, arr[endIdxi] by inci.

Return arr after applying all the updates.

Read more
[LeetCode] Least Number of Unique Integers after K Removals

1481. Least Number of Unique Integers after K Removals

Given an array of integers arr and an integer k. Find the least number of unique integers after removing exactly k elements.

Read more
[LeetCode] Minimum Add to Make Parentheses Valid

921. Minimum Add to Make Parentheses Valid

A parentheses string is valid if and only if:

  • It is the empty string,
  • It can be written as AB (A concatenated with B), where A and B are valid strings, or
  • It can be written as (A), where A is a valid string.

You are given a parentheses string s. In one move, you can insert a parenthesis at any position of the string.

  • For example, if s = “()))”, you can insert an opening parenthesis to be “(()))” or a closing parenthesis to be “())))”.

Return the minimum number of moves required to make s valid.

Read more
[LeetCode] The kth Factor of n

1492. The kth Factor of n

Given two positive integers n and k.

A factor of an integer n is defined as an integer i where n % i == 0.

Consider a list of all factors of n sorted in ascending order, return the kth factor in this list or return -1 if n has less than k factors.

Read more
[LeetCode] Best Time to Buy and Sell Stock II

122. Best Time to Buy and Sell Stock II

You are given an integer array prices where prices[i] is the price of a given stock on the ith day.

On each day, you may decide to buy and/or sell the stock. You can only hold at most one share of the stock at any time. However, you can buy it then immediately sell it on the same day.

Find and return the maximum profit you can achieve.

Read more
[LeetCode] 809. Expressive Words

809. Expressive Words

Sometimes people repeat letters to represent extra feeling. For example:

  • “hello” -> “heeellooo”
  • “hi” -> “hiiii”

In these strings like “heeellooo”, we have groups of adjacent letters that are all the same: “h”, “eee”, “ll”, “ooo”.

You are given a string s and an array of query strings words. A query word is stretchy if it can be made to be equal to s by any number of applications of the following extension operation: choose a group consisting of characters c, and add some number of characters c to the group so that the size of the group is three or more.

  • For example, starting with “hello”, we could do an extension on the group “o” to get “hellooo”, but we cannot get “helloo” since the group “oo” has a size less than three. Also, we could do another extension like “ll” -> “lllll” to get “helllllooo”. If s = “helllllooo”, then the query word “hello” would be stretchy because of these two extension operations: query = “hello” -> “hellooo” -> “helllllooo” = s.

Return the number of query strings that are stretchy.

Read more