[LeetCode] Implement Trie (Prefix Tree)

208. Implement Trie (Prefix Tree)

A trie (pronounced as “try”) or prefix tree is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.

Implement the Trie class:

  • Trie() Initializes the trie object.
  • void insert(String word) Inserts the string word into the trie.
  • boolean search(String word) Returns true if the string word is in the trie (i.e., was inserted before), and false otherwise.
  • boolean startsWith(String prefix) Returns true if there is a previously inserted string word that has the prefix prefix, and false otherwise.
Read more
[LeetCode] Online Stock Span

901. Online Stock Span

Write a class StockSpanner which collects daily price quotes for some stock, and returns the span of that stock’s price for the current day.

The span of the stock’s price today is defined as the maximum number of consecutive days (starting from today and going backwards) for which the price of the stock was less than or equal to today’s price.

For example, if the price of a stock over the next 7 days were [100, 80, 60, 70, 60, 75, 85], then the stock spans would be [1, 1, 1, 2, 1, 4, 6].

Read more
[LeetCode] Find All Duplicates in an Array

442. Find All Duplicates in an Array

Given an integer array nums of length n where all the integers of nums are in the range [1, n] and each integer appears once or twice, return an array of all the integers that appears twice.

You must write an algorithm that runs in O(n) time and uses only constant extra space.

Read more
[LeetCode] Beautiful Arrangement

526. Beautiful Arrangement

Suppose you have n integers labeled 1 through n. A permutation of those n integers perm (1-indexed) is considered a beautiful arrangement if for every i (1 <= i <= n), either of the following is true:

  • perm[i] is divisible by i.
  • i is divisible by perm[i].

Given an integer n, return the number of the beautiful arrangements that you can construct.

Read more
[LeetCode] Design A Leaderboard

1244. Design A Leaderboard

Design a Leaderboard class, which has 3 functions:

  1. addScore(playerId, score): Update the leaderboard by adding score to the given player’s score. If there is no player with such id in the leaderboard, add him to the leaderboard with the given score.
  2. top(K): Return the score sum of the top K players.
  3. reset(playerId): Reset the score of the player with the given id to 0 (in other words erase it from the leaderboard). It is guaranteed that the player was added to the leaderboard before calling this function.

Initially, the leaderboard is empty.

Read more
[LeetCode] Longest Substring with At Most K Distinct Characters

340. Longest Substring with At Most K Distinct Characters

Given a string s and an integer k, return the length of the longest substring of s that contains at most k distinct characters.

Read more
[LeetCode] Nested List Weight Sum

339. Nested List Weight Sum

You are given a nested list of integers nestedList. Each element is either an integer or a list whose elements may also be integers or other lists.

The depth of an integer is the number of lists that it is inside of. For example, the nested list [1,[2,2],[[3],2],1] has each integer’s value set to its depth.

Return the sum of each integer in nestedList multiplied by its dep

Read more
[LeetCode] Partition Labels

763. Partition Labels

A string s of lowercase English letters is given. We want to partition this string into as many parts as possible so that each letter appears in at most one part, and return a list of integers representing the size of these parts.

Read more
[LeetCode] Longest Consecutive Sequence

128. Longest Consecutive Sequence

Given an unsorted array of integers nums, return the length of the longest consecutive elements sequence.

You must write an algorithm that runs in O(n) time.

Read more
[LeetCode] Candy Crush

723. Candy Crush

This question is about implementing a basic elimination algorithm for Candy Crush.

Given a 2D integer array board representing the grid of candy, different positive integers board[i][j] represent different types of candies. A value of board[i][j] = 0 represents that the cell at position (i, j) is empty. The given board represents the state of the game following the player’s move. Now, you need to restore the board to a stable state by crushing candies according to the following rules:

  1. If three or more candies of the same type are adjacent vertically or horizontally, “crush” them all at the same time - these positions become empty.
  2. After crushing all candies simultaneously, if an empty space on the board has candies on top of itself, then these candies will drop until they hit a candy or bottom at the same time. (No new candies will drop outside the top boundary.)
  3. After the above steps, there may exist more candies that can be crushed. If so, you need to repeat the above steps.
  4. If there does not exist more candies that can be crushed (ie. the board is stable), then return the current board.

You need to perform the above rules until the board becomes stable, then return the current board.

Read more