[LeetCode] Sudoku Solver

37. Sudoku Solver

Write a program to solve a Sudoku puzzle by filling the empty cells.

A sudoku solution must satisfy all of the following rules:

  1. Each of the digits 1-9 must occur exactly once in each row.
  2. Each of the digits 1-9 must occur exactly once in each column.
  3. Each of the digits 1-9 must occur exactly once in each of the 9 3x3 sub-boxes of the grid.

The ‘.’ character indicates empty cells.

Read more
[LeetCode] Path with Maximum Probability

1514. Path with Maximum Probability

You are given an undirected weighted graph of n nodes (0-indexed), represented by an edge list where edges[i] = [a, b] is an undirected edge connecting the nodes a and b with a probability of success of traversing that edge succProb[i].

Given two nodes start and end, find the path with the maximum probability of success to go from start to end and return its success probability.

If there is no path from start to end, return 0. Your answer will be accepted if it differs from the correct answer by at most 1e-5.

Read more
[LeetCode] All Possible Full Binary Trees

894. All Possible Full Binary Trees

Given an integer n, return a list of all possible full binary trees with n nodes. Each node of each tree in the answer must have Node.val == 0.

Each element of the answer is the root node of one possible tree. You may return the final list of trees in any order.

A full binary tree is a binary tree where each node has exactly 0 or 2 children.

Read more
[LeetCode] Shortest Path with Alternating Colors

1129. Shortest Path with Alternating Colors

You are given an integer n, the number of nodes in a directed graph where the nodes are labeled from 0 to n - 1. Each edge is red or blue in this graph, and there could be self-edges and parallel edges.

You are given two arrays redEdges and blueEdges where:

  • redEdges[i] = [ai, bi] indicates that there is a directed red edge from node ai to node bi in the graph, and
  • blueEdges[j] = [uj, vj] indicates that there is a directed blue edge from node uj to node vj in the graph.

Return an array answer of length n, where each answer[x] is the length of the shortest path from node 0 to node x such that the edge colors alternate along the path, or -1 if such a path does not exist.

Read more
[LeetCode] My Calendar I

729. My Calendar I

You are implementing a program to use as your calendar. We can add a new event if adding the event will not cause a double booking.

A double booking happens when two events have some non-empty intersection (i.e., some moment is common to both events.).

The event can be represented as a pair of integers start and end that represents a booking on the half-open interval [start, end), the range of real numbers x such that start <= x < end.

Implement the MyCalendar class:

  • MyCalendar() Initializes the calendar object.
  • boolean book(int start, int end) Returns true if the event can be added to the calendar successfully without causing a double booking. Otherwise, return false and do not add the event to the calendar.
Read more
[LeetCode] My Calendar II

731. My Calendar II

You are implementing a program to use as your calendar. We can add a new event if adding the event will not cause a triple booking.

A triple booking happens when three events have some non-empty intersection (i.e., some moment is common to all the three events.).

The event can be represented as a pair of integers start and end that represents a booking on the half-open interval [start, end), the range of real numbers x such that start <= x < end.

Implement the MyCalendarTwo class:

  • MyCalendarTwo() Initializes the calendar object.
  • boolean book(int start, int end) Returns true if the event can be added to the calendar successfully without causing a triple booking. Otherwise, return false and do not add the event to the calendar.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
class MyCalendarTwo {
map<int, int> m;
bool doFailure(int start, int end) {
m[start]--;
m[end]++;

if(!m[end]) m.erase(end);
if(!m[start]) m.erase(start);

return false;
}
public:
MyCalendarTwo() {}

bool book(int start, int end) {
m[start]++;
m[end]--;
int cnt = 0;
for(auto [k, v]: m) {
cnt += v;
if(cnt >= 3) {
return doFailure(start, end);
}
}

return true;
}
};

/**
* Your MyCalendarTwo object will be instantiated and called as such:
* MyCalendarTwo* obj = new MyCalendarTwo();
* bool param_1 = obj->book(start,end);
*/

[LeetCode] Stone Game V

1563. Stone Game V

There are several stones arranged in a row, and each stone has an associated value which is an integer given in the array stoneValue.

In each round of the game, Alice divides the row into two non-empty rows (i.e. left row and right row), then Bob calculates the value of each row which is the sum of the values of all the stones in this row. Bob throws away the row which has the maximum value, and Alice’s score increases by the value of the remaining row. If the value of the two rows are equal, Bob lets Alice decide which row will be thrown away. The next round starts with the remaining row.

The game ends when there is only one stone remaining. Alice’s is initially zero.

Return the maximum score that Alice can obtain.

Read more
[LeetCode] Number of Substrings With Only 1s

1513. Number of Substrings With Only 1s

Given a binary string s, return the number of substrings with all characters 1’s. Since the answer may be too large, return it modulo 109 + 7.

Read more
[LeetCode] Equal Rational Numbers

972. Equal Rational Numbers

Given two strings s and t, each of which represents a non-negative rational number, return true if and only if they represent the same number. The strings may use parentheses to denote the repeating part of the rational number.

A rational number can be represented using up to three parts: , , and a . The number will be represented in one of the following three ways:

  • [IntegerPart]

    • For example, 12, 0, and 123.
  • [IntegerPart][.][NonRepeatingPart]

    • For example, 0.5, 1., 2.12, and 123.0001.
  • [IntegerPart][.][NonRepeatingPart][(][RepeatingPart][)]

    • For example, 0.1(6), 1.(9), 123.00(1212).

The repeating portion of a decimal expansion is conventionally denoted within a pair of round brackets. For example:

  • 1/6 = 0.16666666… = 0.1(6) = 0.1666(6) = 0.166(66).
Read more
[LeetCode] Average Waiting Time

1701. Average Waiting Time

There is a restaurant with a single chef. You are given an array customers, where customers[i] = [arrivali, timei]:

  • arrivali is the arrival time of the ith customer. The arrival times are sorted in non-decreasing order.
  • timei is the time needed to prepare the order of the ith customer.

When a customer arrives, he gives the chef his order, and the chef starts preparing it once he is idle. The customer waits till the chef finishes preparing his order. The chef does not prepare food for more than one customer at a time. The chef prepares food for customers in the order they were given in the input.

Return the average waiting time of all customers. Solutions within 10-5 from the actual answer are considered accepted.

Read more