[LeetCode] Roman to Integer

13. Roman to Integer

Roman numerals are represented by seven different symbols: I, V, X, L, C, D and M.

plaintext
1
2
3
4
5
6
7
8
Symbol       Value
I 1
V 5
X 10
L 50
C 100
D 500
M 1000

For example, 2 is written as II in Roman numeral, just two one’s added together. 12 is written as XII, which is simply X + II. The number 27 is written as XXVII, which is XX + V + II.

Roman numerals are usually written largest to smallest from left to right. However, the numeral for four is not IIII. Instead, the number four is written as IV. Because the one is before the five we subtract it making four. The same principle applies to the number nine, which is written as IX. There are six instances where subtraction is used:

  • I can be placed before V (5) and X (10) to make 4 and 9.
  • X can be placed before L (50) and C (100) to make 40 and 90.
  • C can be placed before D (500) and M (1000) to make 400 and 900.

Given a roman numeral, convert it to an integer.

Read more
[LeetCode] Smallest String With Swaps

1202. Smallest String With Swaps

You are given a string s, and an array of pairs of indices in the string pairs where pairs[i] = [a, b] indicates 2 indices(0-indexed) of the string.

You can swap the characters at any pair of indices in the given pairs any number of times.

Return the lexicographically smallest string that s can be changed to after using the swaps.

Read more
[LeetCode] Search Insert Position

35. Search Insert Position

Given a sorted array of distinct integers and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.

You must write an algorithm with O(log n) runtime complexity.

Read more
[LeetCode] First Bad Version

278. First Bad Version

You are a product manager and currently leading a team to develop a new product. Unfortunately, the latest version of your product fails the quality check. Since each version is developed based on the previous version, all the versions after a bad version are also bad.

Suppose you have n versions [1, 2, …, n] and you want to find out the first bad one, which causes all the following ones to be bad.

You are given an API bool isBadVersion(version) which returns whether version is bad. Implement a function to find the first bad version. You should minimize the number of calls to the API.

Read more
[LeetCode] Binary Search

704. Binary Search

Given an array of integers nums which is sorted in ascending order, and an integer target, write a function to search target in nums. If target exists, then return its index. Otherwise, return -1.

You must write an algorithm with O(log n) runtime complexity.

Read more
[LeetCode] Two Sum

1. Two Sum

Given an array of integers nums and an integer target, return indices of the two numbers such that they add up to target.

You may assume that each input would have exactly one solution, and you may not use the same element twice.

You can return the answer in any order.

Read more
[LeetCode] House Robber III

337. House Robber III

The thief has found himself a new place for his thievery again. There is only one entrance to this area, called root.

Besides the root, each house has one and only one parent house. After a tour, the smart thief realized that all houses in this place form a binary tree. It will automatically contact the police if two directly-linked houses were broken into on the same night.

Given the root of the binary tree, return the maximum amount of money the thief can rob without alerting the police.

Read more
[LeetCode] Path Sum III

437. Path Sum III

Given the root of a binary tree and an integer targetSum, return the number of paths where the sum of the values along the path equals targetSum.

The path does not need to start or end at the root or a leaf, but it must go downwards (i.e., traveling only from parent nodes to child nodes).

Read more
[LeetCode] Flatten Binary Tree to Linked List

114. Flatten Binary Tree to Linked List

Given the root of a binary tree, flatten the tree into a “linked list”:

  • The “linked list” should use the same TreeNode class where the right child pointer points to the next node in the list and the left child pointer is always null.
  • The “linked list” should be in the same order as a pre-order traversal of the binary tree.
Read more
[LeetCode] Minimum Cost to Set Cooking Time

2162. Minimum Cost to Set Cooking Time

A generic microwave supports cooking times for:

  • at least 1 second.
  • at most 99 minutes and 99 seconds.

To set the cooking time, you push at most four digits. The microwave normalizes what you push as four digits by prepending zeroes. It interprets the first two digits as the minutes and the last two digits as the seconds. It then adds them up as the cooking time. For example,

  • You push 9 5 4 (three digits). It is normalized as 0954 and interpreted as 9 minutes and 54 seconds.
  • You push 0 0 0 8 (four digits). It is interpreted as 0 minutes and 8 seconds.
  • You push 8 0 9 0. It is interpreted as 80 minutes and 90 seconds.
  • You push 8 1 3 0. It is interpreted as 81 minutes and 30 seconds.

You are given integers startAt, moveCost, pushCost, and targetSeconds. Initially, your finger is on the digit startAt. Moving the finger above any specific digit costs moveCost units of fatigue. Pushing the digit below the finger once costs pushCost units of fatigue.

There can be multiple ways to set the microwave to cook for targetSeconds seconds but you are interested in the way with the minimum cost.

Return the minimum cost to set targetSeconds seconds of cooking time.

Remember that one minute consists of 60 seconds.

Read more