[LeetCode] Find the Most Competitive Subsequence

1673. Find the Most Competitive Subsequence

Given an integer array nums and a positive integer k, return the most competitive subsequence of nums of size k.

An array’s subsequence is a resulting sequence obtained by erasing some (possibly zero) elements from the array.

We define that a subsequence a is more competitive than a subsequence b (of the same length) if in the first position where a and b differ, subsequence a has a number less than the corresponding number in b. For example, [1,3,4] is more competitive than [1,3,5] because the first position they differ is at the final number, and 4 is less than 5.

Read more
[LeetCode] Minimum Operations to Make a Subsequence

1713. Minimum Operations to Make a Subsequence

You are given an array target that consists of distinct integers and another integer array arr that can have duplicates.

In one operation, you can insert any integer at any position in arr. For example, if arr = [1,4,1,2], you can add 3 in the middle and make it [1,4,3,1,2]. Note that you can insert the integer at the very beginning or end of the array.

Return the minimum number of operations needed to make target a subsequence of arr.

A subsequence of an array is a new array generated from the original array by deleting some elements (possibly none) without changing the remaining elements’ relative order. For example, [2,7,4] is a subsequence of [4,2,3,7,2,1,4] (the underlined elements), while [2,4,2] is not.

Read more
[LeetCode] Abbreviating the Product of a Range

2117. Abbreviating the Product of a Range

You are given two positive integers left and right with left <= right. Calculate the product of all integers in the inclusive range [left, right].

Since the product may be very large, you will abbreviate it following these steps:

    1. Count all trailing zeros in the product and remove them. Let us denote this count as C.
  • For example, there are 3 trailing zeros in 1000, and there are 0 trailing zeros in 546.
    1. Denote the remaining number of digits in the product as d. If d > 10, then express the product as <pre>...<suf> where <pre> denotes the first 5 digits of the product, and <suf>denotes the last 5 digits of the product after removing all trailing zeros. If d <= 10, we keep it unchanged.
  • For example, we express 1234567654321 as 12345…54321, but 1234567 is represented as 1234567.
    1. Finally, represent the product as a string "<pre>...<suf>eC".
  • For example, 12345678987600000 will be represented as “12345…89876e5”.

Return a string denoting the abbreviated product of all integers in the inclusive range [left, right].

Read more
[LeetCode] Increasing Subsequences

491. Increasing Subsequences

Given an integer array nums, return all the different possible increasing subsequences of the given array with at least two elements. You may return the answer in any order.

The given array may contain duplicates, and two equal integers should also be considered a special case of increasing sequence.

Read more
[LeetCode] Increasing Triplet Subsequence

334. Increasing Triplet Subsequence

Given an integer array nums, return true if there exists a triple of indices (i, j, k) such that i < j < k and nums[i] < nums[j] < nums[k]. If no such indices exists, return false.

Read more
[LeetCode] Sudoku Solver

37. Sudoku Solver

Write a program to solve a Sudoku puzzle by filling the empty cells.

A sudoku solution must satisfy all of the following rules:

  1. Each of the digits 1-9 must occur exactly once in each row.
  2. Each of the digits 1-9 must occur exactly once in each column.
  3. Each of the digits 1-9 must occur exactly once in each of the 9 3x3 sub-boxes of the grid.

The ‘.’ character indicates empty cells.

Read more
[LeetCode] Path with Maximum Probability

1514. Path with Maximum Probability

You are given an undirected weighted graph of n nodes (0-indexed), represented by an edge list where edges[i] = [a, b] is an undirected edge connecting the nodes a and b with a probability of success of traversing that edge succProb[i].

Given two nodes start and end, find the path with the maximum probability of success to go from start to end and return its success probability.

If there is no path from start to end, return 0. Your answer will be accepted if it differs from the correct answer by at most 1e-5.

Read more
[LeetCode] All Possible Full Binary Trees

894. All Possible Full Binary Trees

Given an integer n, return a list of all possible full binary trees with n nodes. Each node of each tree in the answer must have Node.val == 0.

Each element of the answer is the root node of one possible tree. You may return the final list of trees in any order.

A full binary tree is a binary tree where each node has exactly 0 or 2 children.

Read more
[LeetCode] Shortest Path with Alternating Colors

1129. Shortest Path with Alternating Colors

You are given an integer n, the number of nodes in a directed graph where the nodes are labeled from 0 to n - 1. Each edge is red or blue in this graph, and there could be self-edges and parallel edges.

You are given two arrays redEdges and blueEdges where:

  • redEdges[i] = [ai, bi] indicates that there is a directed red edge from node ai to node bi in the graph, and
  • blueEdges[j] = [uj, vj] indicates that there is a directed blue edge from node uj to node vj in the graph.

Return an array answer of length n, where each answer[x] is the length of the shortest path from node 0 to node x such that the edge colors alternate along the path, or -1 if such a path does not exist.

Read more
[LeetCode] My Calendar I

729. My Calendar I

You are implementing a program to use as your calendar. We can add a new event if adding the event will not cause a double booking.

A double booking happens when two events have some non-empty intersection (i.e., some moment is common to both events.).

The event can be represented as a pair of integers start and end that represents a booking on the half-open interval [start, end), the range of real numbers x such that start <= x < end.

Implement the MyCalendar class:

  • MyCalendar() Initializes the calendar object.
  • boolean book(int start, int end) Returns true if the event can be added to the calendar successfully without causing a double booking. Otherwise, return false and do not add the event to the calendar.
Read more