[LeetCode] Time Needed to Inform All Employees

1376. Time Needed to Inform All Employees

A company has n employees with a unique ID for each employee from 0 to n - 1. The head of the company is the one with headID.

Each employee has one direct manager given in the manager array where manager[i] is the direct manager of the i-th employee, manager[headID] = -1. Also, it is guaranteed that the subordination relationships have a tree structure.

The head of the company wants to inform all the company employees of an urgent piece of news. He will inform his direct subordinates, and they will inform their subordinates, and so on until all employees know about the urgent news.

The i-th employee needs informTime[i] minutes to inform all of his direct subordinates (i.e., After informTime[i] minutes, all his direct subordinates can start spreading the news).

Return the number of minutes needed to inform all the employees about the urgent news.

Read more
[LeetCode] RLE Iterator

900. RLE Iterator

We can use run-length encoding (i.e., RLE) to encode a sequence of integers. In a run-length encoded array of even length encoding (0-indexed), for all even i, encoding[i] tells us the number of times that the non-negative integer value encoding[i + 1] is repeated in the sequence.

  • For example, the sequence arr = [8,8,8,5,5] can be encoded to be encoding = [3,8,2,5]. encoding = [3,8,0,9,2,5] and encoding = [2,8,1,8,2,5] are also valid RLE of arr.
    Given a run-length encoded array, design an iterator that iterates through it.

Implement the RLEIterator class:

  • RLEIterator(int[] encoded) Initializes the object with the encoded array encoded.
  • int next(int n) Exhausts the next n elements and returns the last element exhausted in this way. If there is no element left to exhaust, return -1 instead.
Read more
[LeetCode] Remove All Ones With Row and Column Flips

2128. Remove All Ones With Row and Column Flips

You are given an m x n binary matrix grid.

In one operation, you can choose any row or column and flip each value in that row or column (i.e., changing all 0’s to 1’s, and all 1’s to 0’s).

Return true if it is possible to remove all 1’s from grid using any number of operations or false otherwise.

Read more
[LeetCode] Find And Replace in String

833. Find And Replace in String

You are given a 0-indexed string s that you must perform k replacement operations on. The replacement operations are given as three 0-indexed parallel arrays, indices, sources, and targets, all of length k.

To complete the ith replacement operation:

  1. Check if the substring sources[i] occurs at index indices[i] in the original string s.
  2. If it does not occur, do nothing.
  3. Otherwise if it does occur, replace that substring with targets[i].

For example, if s = “abcd”, indices[i] = 0, sources[i] = “ab”, and targets[i] = “eee”, then the result of this replacement will be “eeecd”.

All replacement operations must occur simultaneously, meaning the replacement operations should not affect the indexing of each other. The testcases will be generated such that the replacements will not overlap.

  • For example, a testcase with s = “abc”, indices = [0, 1], and sources = [“ab”,”bc”] will not be generated because the “ab” and “bc” replacements overlap.
    Return the resulting string after performing all replacement operations on s.

A substring is a contiguous sequence of characters in a string.

Read more
[LeetCode] Employee Importance

690. Employee Importance

You have a data structure of employee information, including the employee’s unique ID, importance value, and direct subordinates’ IDs.

You are given an array of employees employees where:

  • employees[i].id is the ID of the ith employee.
  • employees[i].importance is the importance value of the ith employee.
  • employees[i].subordinates is a list of the IDs of the direct subordinates of the ith employee.

Given an integer id that represents an employee’s ID, return the total importance value of this employee and all their direct and indirect subordinates.

Read more
[LeetCode] Middle of the Linked List

876. Middle of the Linked List

Given the head of a singly linked list, return the middle node of the linked list.

If there are two middle nodes, return the second middle node.

Read more
[LeetCode] Minimum Falling Path Sum

931. Minimum Falling Path Sum

Given an n x n array of integers matrix, return the minimum sum of any falling path through matrix.

A falling path starts at any element in the first row and chooses the element in the next row that is either directly below or diagonally left/right. Specifically, the next element from position (row, col) will be (row + 1, col - 1), (row + 1, col), or (row + 1, col + 1).

Read more
[LeetCode] Triangle

120. Triangle

Given a triangle array, return the minimum path sum from top to bottom.

For each step, you may move to an adjacent number of the row below. More formally, if you are on index i on the current row, you may move to either index i or index i + 1 on the next row.

Read more
[LeetCode] Find Leaves of Binary Tree

366. Find Leaves of Binary Tree

Given the root of a binary tree, collect a tree’s nodes as if you were doing this:

  • Collect all the leaf nodes.
  • Remove all the leaf nodes.
  • Repeat until the tree is empty.
Read more
[LeetCode] Find Duplicate Subtrees

652. Find Duplicate Subtrees

Given the root of a binary tree, return all duplicate subtrees.

For each kind of duplicate subtrees, you only need to return the root node of any one of them.

Two trees are duplicate if they have the same structure with the same node values.

Read more