[LeetCode] Employee Importance

690. Employee Importance

You have a data structure of employee information, including the employee’s unique ID, importance value, and direct subordinates’ IDs.

You are given an array of employees employees where:

  • employees[i].id is the ID of the ith employee.
  • employees[i].importance is the importance value of the ith employee.
  • employees[i].subordinates is a list of the IDs of the direct subordinates of the ith employee.

Given an integer id that represents an employee’s ID, return the total importance value of this employee and all their direct and indirect subordinates.

Read more
[LeetCode] Middle of the Linked List

876. Middle of the Linked List

Given the head of a singly linked list, return the middle node of the linked list.

If there are two middle nodes, return the second middle node.

Read more
[LeetCode] Minimum Falling Path Sum

931. Minimum Falling Path Sum

Given an n x n array of integers matrix, return the minimum sum of any falling path through matrix.

A falling path starts at any element in the first row and chooses the element in the next row that is either directly below or diagonally left/right. Specifically, the next element from position (row, col) will be (row + 1, col - 1), (row + 1, col), or (row + 1, col + 1).

Read more
[LeetCode] Triangle

120. Triangle

Given a triangle array, return the minimum path sum from top to bottom.

For each step, you may move to an adjacent number of the row below. More formally, if you are on index i on the current row, you may move to either index i or index i + 1 on the next row.

Read more
[LeetCode] Find Leaves of Binary Tree

366. Find Leaves of Binary Tree

Given the root of a binary tree, collect a tree’s nodes as if you were doing this:

  • Collect all the leaf nodes.
  • Remove all the leaf nodes.
  • Repeat until the tree is empty.
Read more
[LeetCode] Find Duplicate Subtrees

652. Find Duplicate Subtrees

Given the root of a binary tree, return all duplicate subtrees.

For each kind of duplicate subtrees, you only need to return the root node of any one of them.

Two trees are duplicate if they have the same structure with the same node values.

Read more
[LeetCode] Minimum Time Difference

539. Minimum Time Difference

Given a list of 24-hour clock time points in “HH:MM” format, return the minimum minutes difference between any two time-points in the list.

Read more
[LeetCode] Number of Matching Subsequences

792. Number of Matching Subsequences

Given a string s and an array of strings words, return the number of words[i] that is a subsequence of s.

A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.

  • For example, “ace” is a subsequence of “abcde”.
Read more
[LeetCode] Satisfiability of Equality Equations

990. Satisfiability of Equality Equations

You are given an array of strings equations that represent relationships between variables where each string equations[i] is of length 4 and takes one of two different forms: “xi==yi” or “xi!=yi”.Here, xi and yi are lowercase letters (not necessarily different) that represent one-letter variable names.

Return true if it is possible to assign integers to variable names so as to satisfy all the given equations, or false otherwise.

Read more
[LeetCode] Step-By-Step Directions From a Binary Tree Node to Another

2096. Step-By-Step Directions From a Binary Tree Node to Another

You are given the root of a binary tree with n nodes. Each node is uniquely assigned a value from 1 to n. You are also given an integer startValue representing the value of the start node s, and a different integer destValue representing the value of the destination node t.

Find the shortest path starting from node s and ending at node t. Generate step-by-step directions of such path as a string consisting of only the uppercase letters ‘L’, ‘R’, and ‘U’. Each letter indicates a specific direction:

  • ‘L’ means to go from a node to its left child node.
  • ‘R’ means to go from a node to its right child node.
  • ‘U’ means to go from a node to its parent node.

Return the step-by-step directions of the shortest path from node s to node t.

Read more