[LeetCode] Strobogrammatic Number III

248. Strobogrammatic Number III

Given two strings low and high that represent two integers low and high where low <= high, return the number of strobogrammatic numbers in the range [low, high].

A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside down).

Read more
[LeetCode] Odd Even Jump

975. Odd Even Jump

You are given an integer array arr. From some starting index, you can make a series of jumps. The (1st, 3rd, 5th, …) jumps in the series are called odd-numbered jumps, and the (2nd, 4th, 6th, …) jumps in the series are called even-numbered jumps. Note that the jumps are numbered, not the indices.

You may jump forward from index i to index j (with i < j) in the following way:

  • During odd-numbered jumps (i.e., jumps 1, 3, 5, …), you jump to the index j such that arr[i] <= arr[j] and arr[j] is the smallest possible value. If there are multiple such indices j, you can only jump to the smallest such index j.
  • During even-numbered jumps (i.e., jumps 2, 4, 6, …), you jump to the index j such that arr[i] >= arr[j] and arr[j] is the largest possible value. If there are multiple such indices j, you can only jump to the smallest such index j.
  • It may be the case that for some index i, there are no legal jumps.

A starting index is good if, starting from that index, you can reach the end of the array (index arr.length - 1) by jumping some number of times (possibly 0 or more than once).

Return the number of good starting indices.

Read more
[LeetCode] Range Sum Query 2D - Mutable

308. Range Sum Query 2D - Mutable

Given a 2D matrix matrix, handle multiple queries of the following types:

  1. Update the value of a cell in matrix.
  2. Calculate the sum of the elements of matrix inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

Implement the NumMatrix class:

  • NumMatrix(int[][] matrix) Initializes the object with the integer matrix matrix.
  • void update(int row, int col, int val) Updates the value of matrix[row][col] to be val.
  • int sumRegion(int row1, int col1, int row2, int col2) Returns the sum of the elements of matrix inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).
Read more
[LeetCode] Find Root of N-Ary Tree

1506. Find Root of N-Ary Tree

You are given all the nodes of an N-ary tree as an array of Node objects, where each node has a unique value.

Return the root of the N-ary tree.

Custom testing:

An N-ary tree can be serialized as represented in its level order traversal where each group of children is separated by the null value (see examples).

For example, the above tree is serialized as [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14].

The testing will be done in the following way:

  1. The input data should be provided as a serialization of the tree.
  2. The driver code will construct the tree from the serialized input data and put each Node object into an array in an arbitrary order.
  3. The driver code will pass the array to findRoot, and your function should find and return the root Node object in the array.
  4. The driver code will take the returned Node object and serialize it. If the serialized value and the input data are the same, the test passes.
Read more
[LeetCode] K Empty Slots

683. K Empty Slots

You have n bulbs in a row numbered from 1 to n. Initially, all the bulbs are turned off. We turn on exactly one bulb every day until all bulbs are on after n days.

You are given an array bulbs of length n where bulbs[i] = x means that on the (i+1)th day, we will turn on the bulb at position x where i is 0-indexed and x is 1-indexed.

Given an integer k, return the minimum day number such that there exists two turned on bulbs that have exactly k bulbs between them that are all turned off. If there isn’t such day, return -1.

Read more
[LeetCode] String Transforms Into Another String

1153. String Transforms Into Another String

Given two strings str1 and str2 of the same length, determine whether you can transform str1 into str2 by doing zero or more conversions.

In one conversion you can convert all occurrences of one character in str1 to any other lowercase English character.

Return true if and only if you can transform str1 into str2.

Read more
[LeetCode] Remove 9

660. Remove 9

Start from integer 1, remove any integer that contains 9 such as 9, 19, 29…

Now, you will have a new integer sequence [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, …].

Given an integer n, return the nth (1-indexed) integer in the new sequence.

Read more
[LeetCode] Prefix and Suffix Search

745. Prefix and Suffix Search

Design a special dictionary with some words that searchs the words in it by a prefix and a suffix.

Implement the WordFilter class:

  • WordFilter(string[] words) Initializes the object with the words in the dictionary.
  • f(string prefix, string suffix) Returns the index of the word in the dictionary, which has the prefix prefix and the suffix suffix. If there is more than one valid index, return the largest of them. If there is no such word in the dictionary, return -1.
Read more
[LeetCode] Smallest Rectangle Enclosing Black Pixels

302. Smallest Rectangle Enclosing Black Pixels

You are given an m x n binary matrix image where 0 represents a white pixel and 1 represents a black pixel.

The black pixels are connected (i.e., there is only one black region). Pixels are connected horizontally and vertically.

Given two integers x and y that represents the location of one of the black pixels, return the area of the smallest (axis-aligned) rectangle that encloses all black pixels.

You must write an algorithm with less than O(mn) runtime complexity

Read more
[LeetCode] Rank Transform of a Matrix

1632. Rank Transform of a Matrix

Given an m x n matrix, return a new matrix answer where answer[row][col] is the rank of matrix[row][col].

The rank is an integer that represents how large an element is compared to other elements. It is calculated using the following rules:

  • The rank is an integer starting from 1.
  • If two elements p and q are in the same row or column, then:
  • If p < q then rank(p) < rank(q)
  • If p == q then rank(p) == rank(q)
  • If p > q then rank(p) > rank(q)
  • The rank should be as small as possible.

The test cases are generated so that answer is unique under the given rules.

Read more