You are given an integer array arr of length n that represents a permutation of the integers in the range [0, n - 1].
We split arr into some number of chunks (i.e., partitions), and individually sort each chunk. After concatenating them, the result should equal the sorted array.
Return the largest number of chunks we can make to sort the array.
Given a sorted integer array nums and three integers a, b and c, apply a quadratic function of the form f(x) = ax2 + bx + c to each element nums[i] in the array, and return the array in a sorted order.
You are given an integer array nums. Two players are playing a game with this array: player 1 and player 2.
Player 1 and player 2 take turns, with player 1 starting first. Both players start the game with a score of 0. At each turn, the player takes one of the numbers from either end of the array (i.e., nums[0] or nums[nums.length - 1]) which reduces the size of the array by 1. The player adds the chosen number to their score. The game ends when there are no more elements in the array.
Return true if Player 1 can win the game. If the scores of both players are equal, then player 1 is still the winner, and you should also return true. You may assume that both players are playing optimally.
Given a reference of a node in a connected undirected graph.
Return a deep copy (clone) of the graph.
Each node in the graph contains a value (int) and a list (List[Node]) of its neighbors.
plaintext
1 2 3 4
class Node { public int val; public List<Node> neighbors; }
Test case format:
For simplicity, each node’s value is the same as the node’s index (1-indexed). For example, the first node with val == 1, the second node with val == 2, and so on. The graph is represented in the test case using an adjacency list.
An adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.
The given node will always be the first node with val = 1. You must return the copy of the given node as a reference to the cloned graph.
You are given a string text. We want to display text on a screen of width w and height h. You can choose any font size from array fonts, which contains the available font sizes in ascending order.
You can use the FontInfo interface to get the width and height of any character at any available font size.
The FontInfo interface is defined as such:
plaintext
1 2 3 4 5 6 7 8
interface FontInfo { // Returns the width of character ch on the screen using font size fontSize. // O(1) per call public int getWidth(int fontSize, char ch); // Returns the height of any character on the screen using font size fontSize. // O(1) per call public int getHeight(int fontSize); }
The calculated width of text for some fontSize is the sum of every getWidth(fontSize, text[i]) call for each 0 <= i < text.length (0-indexed). The calculated height of text for some fontSize is getHeight(fontSize). Note that text is displayed on a single line.
It is guaranteed that FontInfo will return the same value if you call getHeight or getWidth with the same parameters.
It is also guaranteed that for any font size fontSize and any character ch:
You have a 2-D grid of size m x n representing a box, and you have n balls. The box is open on the top and bottom sides.
Each cell in the box has a diagonal board spanning two corners of the cell that can redirect a ball to the right or to the left.
A board that redirects the ball to the right spans the top-left corner to the bottom-right corner and is represented in the grid as 1.
A board that redirects the ball to the left spans the top-right corner to the bottom-left corner and is represented in the grid as -1.
We drop one ball at the top of each column of the box. Each ball can get stuck in the box or fall out of the bottom. A ball gets stuck if it hits a “V” shaped pattern between two boards or if a board redirects the ball into either wall of the box.
Return an array answer of size n where answer[i] is the column that the ball falls out of at the bottom after dropping the ball from the ith column at the top, or -1 if the ball gets stuck in the box.