[LeetCode] Number of Boomerangs

447. Number of Boomerangs

You are given n points in the plane that are all distinct, where points[i] = [xi, yi]. A boomerang is a tuple of points (i, j, k) such that the distance between i and j equals the distance between i and k (the order of the tuple matters).

Return the number of boomerangs.

Read more
[LeetCode] Count Array Pairs Divisible by K

2183. Count Array Pairs Divisible by K

Given a 0-indexed integer array nums of length n and an integer k, return the number of pairs (i, j) such that:

  • 0 <= i < j <= n - 1 and
  • nums[i] * nums[j] is divisible by k.
Read more
[LeetCode] Count Integers With Even Digit Sum

2180. Count Integers With Even Digit Sum

Given a positive integer num, return the number of positive integers less than or equal to num whose digit sums are even.

The digit sum of a positive integer is the sum of all its digits.

Read more
[LeetCode] Merge Nodes in Between Zeros

2181. Merge Nodes in Between Zeros

You are given the head of a linked list, which contains a series of integers separated by 0’s. The beginning and end of the linked list will have Node.val == 0.

For every two consecutive 0’s, merge all the nodes lying in between them into a single node whose value is the sum of all the merged nodes. The modified list should not contain any 0’s.

Return the head of the modified linked list.

Read more
[LeetCode] Construct String With Repeat Limit

2182. Construct String With Repeat Limit

You are given a string s and an integer repeatLimit. Construct a new string repeatLimitedString using the characters of s such that no letter appears more than repeatLimit times in a row. You do not have to use all characters from s.

Return the lexicographically largest repeatLimitedString possible.

A string a is lexicographically larger than a string b if in the first position where a and b differ, string a has a letter that appears later in the alphabet than the corresponding letter in b. If the first min(a.length, b.length) characters do not differ, then the longer string is the lexicographically larger one.

Read more
[LeetCode] Jump Game IV

1345. Jump Game IV

Given an array of integers arr, you are initially positioned at the first index of the array.

In one step you can jump from index i to index:

  • i + 1 where: i + 1 < arr.length.
  • i - 1 where: i - 1 >= 0.
  • j where: arr[i] == arr[j] and i != j.

Return the minimum number of steps to reach the last index of the array.

Notice that you can not jump outside of the array at any time.

Read more
[LeetCode] Count Good Triplets in an Array

2179. Count Good Triplets in an Array

You are given two 0-indexed arrays nums1 and nums2 of length n, both of which are permutations of [0, 1, …, n - 1].

A good triplet is a set of 3 distinct values which are present in increasing order by position both in nums1 and nums2. In other words, if we consider pos1v as the index of the value v in nums1 and pos2v as the index of the value v in nums2, then a good triplet will be a set (x, y, z) where 0 <= x, y, z <= n - 1, such that pos1x < pos1y < pos1z and pos2x < pos2y < pos2z.

Return the total number of good triplets.

Read more
[LeetCode] Path Sum

112. Path Sum

Given the root of a binary tree and an integer targetSum, return true if the tree has a root-to-leaf path such that adding up all the values along the path equals targetSum.

A leaf is a node with no children.

Read more
[LeetCode] Invert Binary Tree

226. Invert Binary Tree

Given the root of a binary tree, invert the tree, and return its root.

Read more
[LeetCode] Remove Covered Intervals

1288. Remove Covered Intervals

Given an array intervals where intervals[i] = [li, ri] represent the interval [li, ri), remove all intervals that are covered by another interval in the list.

The interval [a, b) is covered by the interval [c, d) if and only if c <= a and b <= d.

Return the number of remaining intervals.

Read more