[LeetCode] Maximum Number of Events That Can Be Attended II

1751. Maximum Number of Events That Can Be Attended II

You are given an array of events where events[i] = [startDayi, endDayi, valuei]. The ith event starts at startDayi and ends at endDayi, and if you attend this event, you will receive a value of valuei. You are also given an integer k which represents the maximum number of events you can attend.

You can only attend one event at a time. If you choose to attend an event, you must attend the entire event. Note that the end day is inclusive: that is, you cannot attend two events where one of them starts and the other ends on the same day.

Return the maximum sum of values that you can receive by attending events.

Read more
[LeetCode] Missing Element in Sorted Array

1060. Missing Element in Sorted Array

Given an integer array nums which is sorted in ascending order and all of its elements are unique and given also an integer k, return the kth missing number starting from the leftmost number of the array.

Read more
[LeetCode] Maximum Profit in Job Scheduling

1235. Maximum Profit in Job Scheduling

We have n jobs, where every job is scheduled to be done from startTime[i] to endTime[i], obtaining a profit of profit[i].

You’re given the startTime, endTime and profit arrays, return the maximum profit you can take such that there are no two jobs in the subset with overlapping time range.

If you choose a job that ends at time X you will be able to start another job that starts at time X.

Read more
[LeetCode] Minimum Swaps to Group All 1's Together

1151. Minimum Swaps to Group All 1’s Together

Given a binary array data, return the minimum number of swaps required to group all 1’s present in the array together in any place in the array.

Read more
[LeetCode] Find a Peak Element II

1901. Find a Peak Element II

A peak element in a 2D grid is an element that is strictly greater than all of its adjacent neighbors to the left, right, top, and bottom.

Given a 0-indexed m x n matrix mat where no two adjacent cells are equal, find any peak element mat[i][j] and return the length 2 array [i,j].

You may assume that the entire matrix is surrounded by an outer perimeter with the value -1 in each cell.

You must write an algorithm that runs in O(m log(n)) or O(n log(m)) time.

Read more
[LeetCode] Count Unique Characters of All Substrings of a Given String

828. Count Unique Characters of All Substrings of a Given String

Let’s define a function countUniqueChars(s) that returns the number of unique characters on s.

  • For example, calling countUniqueChars(s) if s = “LEETCODE” then “L”, “T”, “C”, “O”, “D” are the unique characters since they appear only once in s, therefore countUniqueChars(s) = 5.

Given a string s, return the sum of countUniqueChars(t) where t is a substring of s.

Notice that some substrings can be repeated so in this case you have to count the repeated ones too.

Read more
[LeetCode] Minimum Number of Taps to Open to Water a Garden

1326. Minimum Number of Taps to Open to Water a Garden

There is a one-dimensional garden on the x-axis. The garden starts at the point 0 and ends at the point n. (i.e The length of the garden is n).

There are n + 1 taps located at points [0, 1, …, n] in the garden.

Given an integer n and an integer array ranges of length n + 1 where ranges[i] (0-indexed) means the i-th tap can water the area [i - ranges[i], i + ranges[i]] if it was open.

Return the minimum number of taps that should be open to water the whole garden, If the garden cannot be watered return -1.

Read more
[LeetCode] Nth Magical Number

878. Nth Magical Number

A positive integer is magical if it is divisible by either a or b.

Given the three integers n, a, and b, return the nth magical number. Since the answer may be very large, return it modulo 109 + 7.

Read more
[LeetCode] Making A Large Island

827. Making A Large Island

You are given an n x n binary matrix grid. You are allowed to change at most one 0 to be 1.

Return the size of the largest island in grid after applying this operation.

An island is a 4-directionally connected group of 1s.

Read more
[LeetCode] Dungeon Game

174. Dungeon Game

The demons had captured the princess and imprisoned her in the bottom-right corner of a dungeon. The dungeon consists of m x n rooms laid out in a 2D grid. Our valiant knight was initially positioned in the top-left room and must fight his way through dungeon to rescue the princess.

The knight has an initial health point represented by a positive integer. If at any point his health point drops to 0 or below, he dies immediately.

Some of the rooms are guarded by demons (represented by negative integers), so the knight loses health upon entering these rooms; other rooms are either empty (represented as 0) or contain magic orbs that increase the knight’s health (represented by positive integers).

To reach the princess as quickly as possible, the knight decides to move only rightward or downward in each step.

Return the knight’s minimum initial health so that he can rescue the princess.

Note that any room can contain threats or power-ups, even the first room the knight enters and the bottom-right room where the princess is imprisoned.

Read more