[LeetCode] Minimum Operations to Make the Array K-Increasing

2111. Minimum Operations to Make the Array K-Increasing

You are given a 0-indexed array arr consisting of n positive integers, and a positive integer k.

The array arr is called K-increasing if arr[i-k] <= arr[i] holds for every index i, where k <= i <= n-1.

  • For example, arr = [4, 1, 5, 2, 6, 2] is K-increasing for k = 2 because:

    • arr[0] <= arr[2] (4 <= 5)
    • arr[1] <= arr[3] (1 <= 2)
    • arr[2] <= arr[4] (5 <= 6)
    • arr[3] <= arr[5] (2 <= 2)
  • However, the same arr is not K-increasing for k = 1 (because arr[0] > arr[1]) or k = 3 (because arr[0] > arr[3]).

In one operation, you can choose an index i and change arr[i] into any positive integer.

Return the minimum number of operations required to make the array K-increasing for the given k.

Read more
[LeetCode] Sparse Matrix Multiplication

311. Sparse Matrix Multiplication

Given two sparse matrices mat1 of size m x k and mat2 of size k x n, return the result of mat1 x mat2. You may assume that multiplication is always possible.

Read more
[LeetCode] Egg Drop With 2 Eggs and N Floors

1884. Egg Drop With 2 Eggs and N Floors

You are given two identical eggs and you have access to a building with n floors labeled from 1 to n.

You know that there exists a floor f where 0 <= f <= n such that any egg dropped at a floor higher than f will break, and any egg dropped at or below floor f will not break.

In each move, you may take an unbroken egg and drop it from any floor x (where 1 <= x <= n). If the egg breaks, you can no longer use it. However, if the egg does not break, you may reuse it in future moves.

Return the minimum number of moves that you need to determine with certainty what the value of f is.

Read more
[LeetCode] Balanced Binary Tree

110. Balanced Binary Tree

Given a binary tree, determine if it is height-balanced.

For this problem, a height-balanced binary tree is defined as:

a binary tree in which the left and right subtrees of every node differ in height by no more than 1.

Read more
[LeetCode] Maximum Sum of Two Non-Overlapping Subarrays

1031. Maximum Sum of Two Non-Overlapping Subarrays

Given an integer array nums and two integers firstLen and secondLen, return the maximum sum of elements in two non-overlapping subarrays with lengths firstLen and secondLen.

The array with length firstLen could occur before or after the array with length secondLen, but they have to be non-overlapping.

A subarray is a contiguous part of an array.

Read more
[LeetCode] Single Number II

137. Single Number II

Given an integer array nums where every element appears three times except for one, which appears exactly once. Find the single element and return it.

You must implement a solution with a linear runtime complexity and use only constant extra space.

Read more
[LeetCode] Max Increase to Keep City Skyline

807. Max Increase to Keep City Skyline

There is a city composed of n x n blocks, where each block contains a single building shaped like a vertical square prism. You are given a 0-indexed n x n integer matrix grid where grid[r][c] represents the height of the building located in the block at row r and column c.

A city’s skyline is the the outer contour formed by all the building when viewing the side of the city from a distance. The skyline from each cardinal direction north, east, south, and west may be different.

We are allowed to increase the height of any number of buildings by any amount (the amount can be different per building). The height of a 0-height building can also be increased. However, increasing the height of a building should not affect the city’s skyline from any cardinal direction.

Return the maximum total sum that the height of the buildings can be increased by without changing the city’s skyline from any cardinal direction.

Read more
[LeetCode] Distribute Coins in Binary Tree

979. Distribute Coins in Binary Tree

You are given the root of a binary tree with n nodes where each node in the tree has node.val coins. There are n coins in total throughout the whole tree.

In one move, we may choose two adjacent nodes and move one coin from one node to another. A move may be from parent to child, or from child to parent.

Return the minimum number of moves required to make every node have exactly one coin.

Read more
[LeetCode] Furthest Building You Can Reach

1642. Furthest Building You Can Reach

You are given an integer array heights representing the heights of buildings, some bricks, and some ladders.

You start your journey from building 0 and move to the next building by possibly using bricks or ladders.

While moving from building i to building i+1 (0-indexed),

  • If the current building’s height is greater than or equal to the next building’s height, you do not need a ladder or bricks.
  • If the current building’s height is less than the next building’s height, you can either use one ladder or (h[i+1] - h[i]) bricks.

Return the furthest building index (0-indexed) you can reach if you use the given ladders and bricks optimally.

Read more
[LeetCode] Search in a Sorted Array of Unknown Size

702. Search in a Sorted Array of Unknown Size

This is an interactive problem.

You have a sorted array of unique elements and an unknown size. You do not have an access to the array but you can use the ArrayReader interface to access it. You can call ArrayReader.get(i) that:

  • returns the value at the ith index (0-indexed) of the secret array (i.e., secret[i]), or
  • returns 231 - 1 if the i is out of the boundary of the array.

You are also given an integer target.

Return the index k of the hidden array where secret[k] == target or return -1 otherwise.

You must write an algorithm with O(log n) runtime complexity.

Read more