Given an m x n matrix board where each cell is a battleship ‘X’ or empty ‘.’, return the number of the battleships on board.
Battleships can only be placed horizontally or vertically on board. In other words, they can only be made of the shape 1 x k (1 row, k columns) or k x 1 (k rows, 1 column), where k can be of any size. At least one horizontal or vertical cell separates between two battleships (i.e., there are no adjacent battleships).
Given two integer arrays, preorder and postorder where preorder is the preorder traversal of a binary tree of distinct values and postorder is the postorder traversal of the same tree, reconstruct and return the binary tree.
If there exist multiple answers, you can return any of them.
Given a n * n matrix grid of 0’s and 1’s only. We want to represent the grid with a Quad-Tree.
Return the root of the Quad-Tree representing the grid.
Notice that you can assign the value of a node to True or False when isLeaf is False, and both are accepted in the answer.
A Quad-Tree is a tree data structure in which each internal node has exactly four children. Besides, each node has two attributes:
val: True if the node represents a grid of 1’s or False if the node represents a grid of 0’s.
isLeaf: True if the node is leaf node on the tree or False if the node has the four children.
plaintext
1 2 3 4 5 6 7 8
class Node { public boolean val; public boolean isLeaf; public Node topLeft; public Node topRight; public Node bottomLeft; public Node bottomRight; }
We can construct a Quad-Tree from a two-dimensional area using the following steps:
If the current grid has the same value (i.e all 1’s or all 0’s) set isLeaf True and set val to the value of the grid and set the four children to Null and stop.
If the current grid has different values, set isLeaf to False and set val to any value and divide the current grid into four sub-grids as shown in the photo.
Recurse for each of the children with the proper sub-grid.
If you want to know more about the Quad-Tree, you can refer to the wiki.
Quad-Tree format:
The output represents the serialized format of a Quad-Tree using level order traversal, where null signifies a path terminator where no node exists below.
It is very similar to the serialization of the binary tree. The only difference is that the node is represented as a list [isLeaf, val].
If the value of isLeaf or val is True we represent it as 1 in the list [isLeaf, val] and if the value of isLeaf or val is False we represent it as 0.
You are given an integer array arr of length n that represents a permutation of the integers in the range [0, n - 1].
We split arr into some number of chunks (i.e., partitions), and individually sort each chunk. After concatenating them, the result should equal the sorted array.
Return the largest number of chunks we can make to sort the array.
Given a sorted integer array nums and three integers a, b and c, apply a quadratic function of the form f(x) = ax2 + bx + c to each element nums[i] in the array, and return the array in a sorted order.
You are given an integer array nums. Two players are playing a game with this array: player 1 and player 2.
Player 1 and player 2 take turns, with player 1 starting first. Both players start the game with a score of 0. At each turn, the player takes one of the numbers from either end of the array (i.e., nums[0] or nums[nums.length - 1]) which reduces the size of the array by 1. The player adds the chosen number to their score. The game ends when there are no more elements in the array.
Return true if Player 1 can win the game. If the scores of both players are equal, then player 1 is still the winner, and you should also return true. You may assume that both players are playing optimally.
Given a reference of a node in a connected undirected graph.
Return a deep copy (clone) of the graph.
Each node in the graph contains a value (int) and a list (List[Node]) of its neighbors.
plaintext
1 2 3 4
class Node { public int val; public List<Node> neighbors; }
Test case format:
For simplicity, each node’s value is the same as the node’s index (1-indexed). For example, the first node with val == 1, the second node with val == 2, and so on. The graph is represented in the test case using an adjacency list.
An adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.
The given node will always be the first node with val = 1. You must return the copy of the given node as a reference to the cloned graph.