[LeetCode] Shortest Path Visiting All Nodes

847. Shortest Path Visiting All Nodes

You have an undirected, connected graph of n nodes labeled from 0 to n - 1. You are given an array graph where graph[i] is a list of all the nodes connected with node i by an edge.

Return the length of the shortest path that visits every node. You may start and stop at any node, you may revisit nodes multiple times, and you may reuse edges.

Read more
[LeetCode] Best Time to Buy and Sell Stock IV

188. Best Time to Buy and Sell Stock IV

You are given an integer array prices where prices[i] is the price of a given stock on the ith day, and an integer k.

Find the maximum profit you can achieve. You may complete at most k transactions.

Note: You may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).

Read more
[LeetCode] Sum of Distances in Tree

834. Sum of Distances in Tree

There is an undirected connected tree with n nodes labeled from 0 to n - 1 and n - 1 edges.

You are given the integer n and the array edges where edges[i] = [ai, bi] indicates that there is an edge between nodes ai and bi in the tree.

Return an array answer of length n where answer[i] is the sum of the distances between the ith node in the tree and all other nodes.

Read more
[LeetCode] Fixed Point

1064. Fixed Point

Given an array of distinct integers arr, where arr is sorted in ascending order, return the smallest index i that satisfies arr[i] == i. If there is no such index, return -1.

Read more
[LeetCode] Best Time to Buy and Sell Stock III

123. Best Time to Buy and Sell Stock III

You are given an array prices where prices[i] is the price of a given stock on the ith day.

Find the maximum profit you can achieve. You may complete at most two transactions.

Note: You may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).

Read more
[LeetCode] Lowest Common Ancestor of a Binary Search Tree

235. Lowest Common Ancestor of a Binary Search Tree

Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”

Read more
[LeetCode] Two Sum IV - Input is a BST

653. Two Sum IV - Input is a BST

Given the root of a Binary Search Tree and a target number k, return true if there exist two elements in the BST such that their sum is equal to the given target.

Read more
[LeetCode] Excel Sheet Column Number

171. Excel Sheet Column Number

Given a string columnTitle that represents the column title as appear in an Excel sheet, return its corresponding column number.

For example:

1
2
3
4
5
6
7
8
A -> 1
B -> 2
C -> 3
...
Z -> 26
AA -> 27
AB -> 28
...
Read more
[LeetCode] Kth Ancestor of a Tree Node

1483. Kth Ancestor of a Tree Node

You are given a tree with n nodes numbered from 0 to n - 1 in the form of a parent array parent where parent[i] is the parent of ith node. The root of the tree is node 0. Find the kth ancestor of a given node.

The kth ancestor of a tree node is the kth node in the path from that node to the root node.

Implement the TreeAncestor class:

  • TreeAncestor(int n, int[] parent) Initializes the object with the number of nodes in the tree and the parent array.

  • int getKthAncestor(int node, int k) return the kth ancestor of the given node node. If there is no such ancestor, return -1.

Read more
[LeetCode] Sliding Window Median

480. Sliding Window Median

The median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle values.

  • For examples, if arr = [2,3,4], the median is 3.
  • For examples, if arr = [1,2,3,4], the median is (2 + 3) / 2 = 2.5.

You are given an integer array nums and an integer k. There is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.

Return the median array for each window in the original array. Answers within 10-5 of the actual value will be accepted.

Read more