[LeetCode] Painting a Grid With Three Different Colors

1931. Painting a Grid With Three Different Colors

You are given two integers m and n. Consider an m x n grid where each cell is initially white. You can paint each cell red, green, or blue. All cells must be painted.

Return the number of ways to color the grid with no two adjacent cells having the same color. Since the answer can be very large, return it modulo 109 + 7.

Read more
[LeetCode] Strong Password Checker

420. Strong Password Checker

A password is considered strong if the below conditions are all met:

  • It has at least 6 characters and at most 20 characters.
  • It contains at least one lowercase letter, at least one uppercase letter, and at least one digit.
  • It does not contain three repeating characters in a row (i.e., “…aaa…” is weak, but “…aa…a…” is strong, assuming other conditions are met).

Given a string password, return the minimum number of steps required to make password strong. if password is already strong, return 0.

In one step, you can:

  • Insert one character to password,
  • Delete one character from password, or
  • Replace one character of password with another character.
Read more
[LeetCode] Minimum Cost to Reach Destination in Time

1928. Minimum Cost to Reach Destination in Time

There is a country of n cities numbered from 0 to n - 1 where all the cities are connected by bi-directional roads. The roads are represented as a 2D integer array edges where edges[i] = [xi, yi, timei] denotes a road between cities xi and yi that takes timei minutes to travel. There may be multiple roads of differing travel times connecting the same two cities, but no road connects a city to itself.

Each time you pass through a city, you must pay a passing fee. This is represented as a 0-indexed integer array passingFees of length n where passingFees[j] is the amount of dollars you must pay when you pass through city j.

In the beginning, you are at city 0 and want to reach city n - 1 in maxTime minutes or less. The cost of your journey is the summation of passing fees for each city that you passed through at some moment of your journey (including the source and destination cities).

Given maxTime, edges, and passingFees, return the minimum cost to complete your journey, or -1 if you cannot complete it within maxTime minutes.

Read more
[LeetCode] Number of Ways to Wear Different Hats to Each Other

1434. Number of Ways to Wear Different Hats to Each Other

There are n people and 40 types of hats labeled from 1 to 40.

Given a 2D integer array hats, where hats[i] is a list of all hats preferred by the ith person.

Return the number of ways that the n people wear different hats to each other.

Since the answer may be too large, return it modulo 109 + 7.

Read more
[LeetCode] Maximum Number of Groups Getting Fresh Donuts

1815. Maximum Number of Groups Getting Fresh Donuts

There is a donuts shop that bakes donuts in batches of batchSize. They have a rule where they must serve all of the donuts of a batch before serving any donuts of the next batch. You are given an integer batchSize and an integer array groups, where groups[i] denotes that there is a group of groups[i] customers that will visit the shop. Each customer will get exactly one donut.

When a group visits the shop, all customers of the group must be served before serving any of the following groups. A group will be happy if they all get fresh donuts. That is, the first customer of the group does not receive a donut that was left over from the previous group.

You can freely rearrange the ordering of the groups. Return the maximum possible number of happy groups after rearranging the groups.

Read more
[LeetCode] Maximize Score After N Operations

1799. Maximize Score After N Operations

You are given nums, an array of positive integers of size 2 * n. You must perform n operations on this array.

In the ith operation (1-indexed), you will:

  • Choose two elements, x and y.
  • Receive a score of i * gcd(x, y).
  • Remove x and y from nums.

Return the maximum score you can receive after performing n operations.

The function gcd(x, y) is the greatest common divisor of x and y.

Read more
[LeetCode] Possible Bipartition

886. Possible Bipartition

We want to split a group of n people (labeled from 1 to n) into two groups of any size. Each person may dislike some other people, and they should not go into the same group.

Given the integer n and the array dislikes where dislikes[i] = [ai, bi] indicates that the person labeled ai does not like the person labeled bi, return true if it is possible to split everyone into two groups in this way.

Read more
[LeetCode] Maximum Students Taking Exam

1349. Maximum Students Taking Exam

Given a m * n matrix seats that represent seats distributions in a classroom. If a seat is broken, it is denoted by ‘#’ character otherwise it is denoted by a ‘.’ character.

Students can see the answers of those sitting next to the left, right, upper left and upper right, but he cannot see the answers of the student sitting directly in front or behind him. Return the maximum number of students that can take the exam together without any cheating being possible..

Students must be placed in seats in good condition.

Read more
[LeetCode] Distribute Repeating Integers

1655. Distribute Repeating Integers

You are given an array of n integers, nums, where there are at most 50 unique values in the array. You are also given an array of m customer order quantities, quantity, where quantity[i] is the amount of integers the ith customer ordered. Determine if it is possible to distribute nums such that:

  • The ith customer gets exactly quantity[i] integers,
  • The integers the ith customer gets are all equal, and
  • Every customer is satisfied.

Return true if it is possible to distribute nums according to the above conditions.

Read more
[LeetCode] Binary Tree Cameras

968. Binary Tree Cameras

You are given the root of a binary tree. We install cameras on the tree nodes where each camera at a node can monitor its parent, itself, and its immediate children.

Return the minimum number of cameras needed to monitor all nodes of the tree.

Read more