[LeetCode] Minimum Number of K Consecutive Bit Flips

995. Minimum Number of K Consecutive Bit Flips

You are given a binary array nums and an integer k.

A k-bit flip is choosing a subarray of length k from nums and simultaneously changing every 0 in the subarray to 1, and every 1 in the subarray to 0.

Return the minimum number of k-bit flips required so that there is no 0 in the array. If it is not possible, return -1.

A subarray is a contiguous part of an array.

Read more
[LeetCode] Remove Max Number of Edges to Keep Graph Fully Traversable

1579. Remove Max Number of Edges to Keep Graph Fully Traversable

Alice and Bob have an undirected graph of n nodes and 3 types of edges:

  • Type 1: Can be traversed by Alice only.
  • Type 2: Can be traversed by Bob only.
  • Type 3: Can by traversed by both Alice and Bob.

Given an array edges where edges[i] = [typei, ui, vi] represents a bidirectional edge of type typei between nodes ui and vi, find the maximum number of edges you can remove so that after removing the edges, the graph can still be fully traversed by both Alice and Bob. The graph is fully traversed by Alice and Bob if starting from any node, they can reach all other nodes.

Return the maximum number of edges you can remove, or return -1 if it’s impossible for the graph to be fully traversed by Alice and Bob.

Read more
[LeetCode] Product of Two Run-Length Encoded Arrays

1868. Product of Two Run-Length Encoded Arrays

Run-length encoding is a compression algorithm that allows for an integer array nums with many segments of consecutive repeated numbers to be represented by a (generally smaller) 2D array encoded. Each encoded[i] = [vali, freqi] describes the ith segment of repeated numbers in nums where vali is the value that is repeated freqi times.

  • For example, nums = [1,1,1,2,2,2,2,2] is represented by the run-length encoded array encoded = [[1,3],[2,5]]. Another way to read this is “three 1’s followed by five 2’s”.

The product of two run-length encoded arrays encoded1 and encoded2 can be calculated using the following steps:

  1. Expand both encoded1 and encoded2 into the full arrays nums1 and nums2 respectively.
  2. Create a new array prodNums of length nums1.length and set prodNums[i] = nums1[i] * nums2[i].
  3. Compress prodNums into a run-length encoded array and return it.

You are given two run-length encoded arrays encoded1 and encoded2 representing full arrays nums1 and nums2 respectively. Both nums1 and nums2 have the same length. Each encoded1[i] = [vali, freqi] describes the ith segment of nums1, and each encoded2[j] = [valj, freqj] describes the jth segment of nums2.

Return the product of encoded1 and encoded2.

Note: Compression should be done such that the run-length encoded array has the minimum possible length.

Read more
[LeetCode] Subtract the Product and Sum of Digits of an Integer

1281. Subtract the Product and Sum of Digits of an Integer

Given an integer number n, return the difference between the product of its digits and the sum of its digits.

Read more
[LeetCode] Longest Palindrome

409. Longest Palindrome

Given a string s which consists of lowercase or uppercase letters, return the length of the longest palindrome that can be built with those letters.

Letters are case sensitive, for example, “Aa” is not considered a palindrome here.

Read more
[LeetCode] Perform String Shifts

1427. Perform String Shifts

You are given a string s containing lowercase English letters, and a matrix shift, where shift[i] = [directioni, amounti]:

  • directioni can be 0 (for left shift) or 1 (for right shift).
    amounti is the amount by which string s is to be shifted.
  • A left shift by 1 means remove the first character of s and append it to the end.
  • Similarly, a right shift by 1 means remove the last character of s and add it to the beginning.

Return the final string after all operations.

Read more
[LeetCode] The Maze II

505. The Maze II

There is a ball in a maze with empty spaces (represented as 0) and walls (represented as 1). The ball can go through the empty spaces by rolling up, down, left or right, but it won’t stop rolling until hitting a wall. When the ball stops, it could choose the next direction.

Given the m x n maze, the ball’s start position and the destination, where start = [startrow, startcol] and destination = [destinationrow, destinationcol], return the shortest distance for the ball to stop at the destination. If the ball cannot stop at destination, return -1.

The distance is the number of empty spaces traveled by the ball from the start position (excluded) to the destination (included).

You may assume that the borders of the maze are all walls (see examples).

Read more
[LeetCode] Complete Binary Tree Inserter

919. Complete Binary Tree Inserter

A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible.

Design an algorithm to insert a new node to a complete binary tree keeping it complete after the insertion.

Implement the CBTInserter class:

  • CBTInserter(TreeNode root) Initializes the data structure with the root of the complete binary tree.
  • int insert(int v) Inserts a TreeNode into the tree with value Node.val == val so that the tree remains complete, and returns the value of the parent of the inserted TreeNode.
  • TreeNode get_root() Returns the root node of the tree.
Read more
[LeetCode] Longest Arithmetic Subsequence

1027. Longest Arithmetic Subsequence

Given an array nums of integers, return the length of the longest arithmetic subsequence in nums.

Recall that a subsequence of an array nums is a list nums[i1], nums[i2], …, nums[ik] with 0 <= i1 < i2 < … < ik <= nums.length - 1, and that a sequence seq is arithmetic if seq[i+1] - seq[i] are all the same value (for 0 <= i < seq.length - 1).

Read more
[LeetCode] Graph Valid Tree

261. Graph Valid Tree

You have a graph of n nodes labeled from 0 to n - 1. You are given an integer n and a list of edges where edges[i] = [ai, bi] indicates that there is an undirected edge between nodes ai and bi in the graph.

Return true if the edges of the given graph make up a valid tree, and false otherwise.

Read more