[LeetCode] Find Servers That Handled Most Number of Requests

1606. Find Servers That Handled Most Number of Requests

You have k servers numbered from 0 to k-1 that are being used to handle multiple requests simultaneously. Each server has infinite computational capacity but cannot handle more than one request at a time. The requests are assigned to servers according to a specific algorithm:

  • The ith (0-indexed) request arrives.
  • If all servers are busy, the request is dropped (not handled at all).
  • If the (i % k)th server is available, assign the request to that server.
  • Otherwise, assign the request to the next available server (wrapping around the list of servers and starting from 0 if necessary). For example, if the ith server is busy, try to assign the request to the (i+1)th server, then the (i+2)th server, and so on.

You are given a strictly increasing array arrival of positive integers, where arrival[i] represents the arrival time of the ith request, and another array load, where load[i] represents the load of the ith request (the time it takes to complete). Your goal is to find the busiest server(s). A server is considered busiest if it handled the most number of requests successfully among all the servers.

Return a list containing the IDs (0-indexed) of the busiest server(s). You may return the IDs in any order.

Read more
[LeetCode] Design Most Recently Used Queue

1756. Design Most Recently Used Queue

Design a queue-like data structure that moves the most recently used element to the end of the queue.

Implement the MRUQueue class:

  • MRUQueue(int n) constructs the MRUQueue with n elements: [1,2,3,…,n].
  • int fetch(int k) moves the kth element (1-indexed) to the end of the queue and returns it.
Read more
[LeetCode] Delivering Boxes from Storage to Ports

1687. Delivering Boxes from Storage to Ports

You have the task of delivering some boxes from storage to their ports using only one ship. However, this ship has a limit on the number of boxes and the total weight that it can carry.

You are given an array boxes, where boxes[i] = [ports​​i​, weighti], and three integers portsCount, maxBoxes, and maxWeight.

  • ports​​i is the port where you need to deliver the ith box and weightsi is the weight of the ith box.
  • portsCount is the number of ports.
  • maxBoxes and maxWeight are the respective box and weight limits of the ship.

The boxes need to be delivered in the order they are given. The ship will follow these steps:

  • The ship will take some number of boxes from the boxes queue, not violating the maxBoxes and maxWeight constraints.
  • For each loaded box in order, the ship will make a trip to the port the box needs to be delivered to and deliver it. If the ship is already at the correct port, no trip is needed, and the box can immediately be delivered.
  • The ship then makes a return trip to storage to take more boxes from the queue.

The ship must end at storage after all the boxes have been delivered.

Return the minimum number of trips the ship needs to make to deliver all boxes to their respective ports.

Read more
[LeetCode] Single Number III

260. Single Number III

Given an integer array nums, in which exactly two elements appear only once and all the other elements appear exactly twice. Find the two elements that appear only once. You can return the answer in any order.

You must write an algorithm that runs in linear runtime complexity and uses only constant extra space.

Read more
[LeetCode] Find the Shortest Superstring

943. Find the Shortest Superstring

Given an array of strings words, return the smallest string that contains each string in words as a substring. If there are multiple valid strings of the smallest length, return any of them.

You may assume that no string in words is a substring of another string in words.

Read more
[LeetCode] Merge BSTs to Create Single BST

1932. Merge BSTs to Create Single BST

You are given n BST (binary search tree) root nodes for n separate BSTs stored in an array trees (0-indexed). Each BST in trees has at most 3 nodes, and no two roots have the same value. In one operation, you can:

  • Select two distinct indices i and j such that the value stored at one of the leaves of trees[i] is equal to the root value of trees[j].
  • Replace the leaf node in trees[i] with trees[j].
  • Remove trees[j] from trees.

Return the root of the resulting BST if it is possible to form a valid BST after performing n - 1 operations, or null if it is impossible to create a valid BST.

A BST (binary search tree) is a binary tree where each node satisfies the following property:

  • Every node in the node’s left subtree has a value strictly less than the node’s value.
  • Every node in the node’s right subtree has a value strictly greater than the node’s value.

A leaf is a node that has no children.

Read more
[LeetCode] Kth Smallest Number in Multiplication Table

668. Kth Smallest Number in Multiplication Table

Nearly everyone has used the Multiplication Table. The multiplication table of size m x n is an integer matrix mat where mat[i][j] == i * j (1-indexed).

Given three integers m, n, and k, return the kth smallest element in the m x n multiplication table.

Read more
[LeetCode] All O'one Data Structure

432. All O`one Data Structure

Design a data structure to store the strings’ count with the ability to return the strings with minimum and maximum counts.

Implement the AllOne class:

  • AllOne() Initializes the object of the data structure.
  • inc(String key) Increments the count of the string key by 1. If key does not exist in the data structure, insert it with count 1.
  • dec(String key) Decrements the count of the string key by 1. If the count of key is 0 after the decrement, remove it from the data structure. It is guaranteed that key exists in the data structure before the decrement.
  • getMaxKey() Returns one of the keys with the maximal count. If no element exists, return an empty string “”.
  • getMinKey() Returns one of the keys with the minimum count. If no element exists, return an empty string “”.
Read more
[LeetCode] Subarrays with K Different Integers

992. Subarrays with K Different Integers

Given an integer array nums and an integer k, return the number of good subarrays of nums.

A good array is an array where the number of different integers in that array is exactly k.

  • For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.

A subarray is a contiguous part of an array.

Read more
[LeetCode] Concatenated Words

472. Concatenated Words

Given an array of strings words (without duplicates), return all the concatenated words in the given list of words.

A concatenated word is defined as a string that is comprised entirely of at least two shorter words in the given array.

Read more