[LeetCode] Is Graph Bipartite?

785. Is Graph Bipartite?

There is an undirected graph with n nodes, where each node is numbered between 0 and n - 1. You are given a 2D array graph, where graph[u] is an array of nodes that node u is adjacent to. More formally, for each v in graph[u], there is an undirected edge between node u and node v. The graph has the following properties:

  • There are no self-edges (graph[u] does not contain u).
  • There are no parallel edges (graph[u] does not contain duplicate values).
  • If v is in graph[u], then u is in graph[v] (the graph is undirected).
  • The graph may not be connected, meaning there may be two nodes u and v such that there is no path between them.

A graph is bipartite if the nodes can be partitioned into two independent sets A and B such that every edge in the graph connects a node in set A and a node in set B.

Return true if and only if it is bipartite.

Read more
[LeetCode] Maximal Network Rank

1615. Maximal Network Rank

There is an infrastructure of n cities with some number of roads connecting these cities. Each roads[i] = [ai, bi] indicates that there is a bidirectional road between cities ai and bi.

The network rank of two different cities is defined as the total number of directly connected roads to either city. If a road is directly connected to both cities, it is only counted once.

The maximal network rank of the infrastructure is the maximum network rank of all pairs of different cities.

Given the integer n and the array roads, return the maximal network rank of the entire infrastructure.

Read more
[LeetCode] Number of Distinct Substrings in a String

1698. Number of Distinct Substrings in a String

Given a string s, return the number of distinct substrings of s.

A substring of a string is obtained by deleting any number of characters (possibly zero) from the front of the string and any number (possibly zero) from the back of the string.

Read more
[LeetCode] Encrypt and Decrypt Strings

2227. Encrypt and Decrypt Strings

You are given a character array keys containing unique characters and a string array values containing strings of length 2. You are also given another string array dictionary that contains all permitted original strings after decryption. You should implement a data structure that can encrypt or decrypt a 0-indexed string.

A string is encrypted with the following process:

  1. For each character c in the string, we find the index i satisfying keys[i] == c in keys.
  2. Replace c with values[i] in the string.

A string is decrypted with the following process:

  1. For each substring s of length 2 occurring at an even index in the string, we find an i such that values[i] == s. If there are multiple valid i, we choose any one of them. This means a string could have multiple possible strings it can decrypt to.
  2. Replace s with keys[i] in the string.

Implement the Encrypter class:

  • Encrypter(char[] keys, String[] values, String[] dictionary) Initializes the Encrypter class with keys, values, and dictionary.
  • String encrypt(String word1) Encrypts word1 with the encryption process described above and returns the encrypted string.
  • int decrypt(String word2) Returns the number of possible strings word2 could decrypt to that also appear in dictionary.
Read more
[LeetCode] Minimum Number of Operations to Convert Time

2224. Minimum Number of Operations to Convert Time

You are given two strings current and correct representing two 24-hour times.

24-hour times are formatted as “HH:MM”, where HH is between 00 and 23, and MM is between 00 and 59. The earliest 24-hour time is 00:00, and the latest is 23:59.

In one operation you can increase the time current by 1, 5, 15, or 60 minutes. You can perform this operation any number of times.

Return the minimum number of operations needed to convert current to correct.

Read more
[LeetCode] Find Players With Zero or One Losses

2225. Find Players With Zero or One Losses

You are given an integer array matches where matches[i] = [winneri, loseri] indicates that the player winneri defeated player loseri in a match.

Return a list answer of size 2 where:

  • answer[0] is a list of all players that have not lost any matches.
  • answer[1] is a list of all players that have lost exactly one match.

The values in the two lists should be returned in increasing order.

Note:

  • You should only consider the players that have played at least one match.
  • The testcases will be generated such that no two matches will have the same outcome.
Read more
[LeetCode] Maximum Candies Allocated to K Children

2226. Maximum Candies Allocated to K Children

You are given a 0-indexed integer array candies. Each element in the array denotes a pile of candies of size candies[i]. You can divide each pile into any number of sub piles, but you cannot merge two piles together.

You are also given an integer k. You should allocate piles of candies to k children such that each child gets the same number of candies. Each child can take at most one pile of candies and some piles of candies may go unused.

Return the maximum number of candies each child can get.

Read more
[LeetCode] Reorder List

143. Reorder List

You are given the head of a singly linked-list. The list can be represented as:

L0 → L1 → … → Ln - 1 → Ln

Reorder the list to be on the following form:

L0 → Ln → L1 → Ln - 1 → L2 → Ln - 2 → …

You may not modify the values in the list’s nodes. Only nodes themselves may be changed.

Read more
[LeetCode] 4 Keys Keyboard

651. 4 Keys Keyboard

Imagine you have a special keyboard with the following keys:

  • A: Print one ‘A’ on the screen.
  • Ctrl-A: Select the whole screen.
  • Ctrl-C: Copy selection to buffer.
  • Ctrl-V: Print buffer on screen appending it after what has already been printed.

Given an integer n, return the maximum number of ‘A’ you can print on the screen with at most n presses on the keys.

Read more
[LeetCode] Find the Derangement of An Array

634. Find the Derangement of An Array

In combinatorial mathematics, a derangement is a permutation of the elements of a set, such that no element appears in its original position.

You are given an integer n. There is originally an array consisting of n integers from 1 to n in ascending order, return the number of derangements it can generate. Since the answer may be huge, return it modulo 109 + 7.

Read more