[LeetCode] Last Stone Weight II

1049. Last Stone Weight II

You are given an array of integers stones where stones[i] is the weight of the ith stone.

We are playing a game with the stones. On each turn, we choose any two stones and smash them together. Suppose the stones have weights x and y with x <= y. The result of this smash is:

  • If x == y, both stones are destroyed, and
  • If x != y, the stone of weight x is destroyed, and the stone of weight y has new weight y - x.

At the end of the game, there is at most one stone left.

Return the smallest possible weight of the left stone. If there are no stones left, return 0.

Read more
[LeetCode] Word Pattern

290. Word Pattern

Given a pattern and a string s, find if s follows the same pattern.

Here follow means a full match, such that there is a bijection between a letter in pattern and a non-empty word in s.

Read more
[LeetCode] Last Stone Weight

1046. Last Stone Weight

You are given an array of integers stones where stones[i] is the weight of the ith stone.

We are playing a game with the stones. On each turn, we choose the heaviest two stones and smash them together. Suppose the heaviest two stones have weights x and y with x <= y. The result of this smash is:

  • If x == y, both stones are destroyed, and
  • If x != y, the stone of weight x is destroyed, and the stone of weight y has new weight y - x.

At the end of the game, there is at most one stone left.

Return the smallest possible weight of the left stone. If there are no stones left, return 0.

Read more
[LeetCode] Min Stack

155. Min Stack

Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.

Implement the MinStack class:

  • MinStack() initializes the stack object.
  • void push(int val) pushes the element val onto the stack.
  • void pop() removes the element on the top of the stack.
  • int top() gets the top element of the stack.
  • int getMin() retrieves the minimum element in the stack.
Read more
[LeetCode] Orderly Queue

899. Orderly Queue

You are given a string s and an integer k. You can choose one of the first k letters of s and append it at the end of the string..

Return the lexicographically smallest string you could have after applying the mentioned step any number of moves.

Read more
[LeetCode] Check if an Original String Exists Given Two Encoded Strings

2060. Check if an Original String Exists Given Two Encoded Strings

An original string, consisting of lowercase English letters, can be encoded by the following steps:

  • Arbitrarily split it into a sequence of some number of non-empty substrings.
  • Arbitrarily choose some elements (possibly none) of the sequence, and replace each with its length (as a numeric string).
  • Concatenate the sequence as the encoded string.

For example, one way to encode an original string “abcdefghijklmnop” might be:

  • Split it as a sequence: [“ab”, “cdefghijklmn”, “o”, “p”].
  • Choose the second and third elements to be replaced by their lengths, respectively. The sequence becomes [“ab”, “12”, “1”, “p”].
  • Concatenate the elements of the sequence to get the encoded string: “ab121p”.

Given two encoded strings s1 and s2, consisting of lowercase English letters and digits 1-9 (inclusive), return true if there exists an original string that could be encoded as both s1 and s2. Otherwise, return false.

Note: The test cases are generated such that the number of consecutive digits in s1 and s2 does not exceed 3.

Read more
[LeetCode] Longest Subsequence Repeated k Times

2014. Longest Subsequence Repeated k Times

You are given a string s of length n, and an integer k. You are tasked to find the longest subsequence repeated k times in string s.

A subsequence is a string that can be derived from another string by deleting some or no characters without changing the order of the remaining characters.

A subsequence seq is repeated k times in the string s if seq k is a subsequence of s, where seq k represents a string constructed by concatenating seq k times.

For example, “bba” is repeated 2 times in the string “bababcba”, because the string “bbabba”, constructed by concatenating “bba” 2 times, is a subsequence of the string “bababcba”.

Return the longest subsequence repeated k times in string s. If multiple such subsequences are found, return the lexicographically largest one. If there is no such subsequence, return an empty string.

Read more
[LeetCode] Distance to a Cycle in Undirected Graph

2204. Distance to a Cycle in Undirected Graph

You are given a positive integer n representing the number of nodes in a connected undirected graph containing exactly one cycle. The nodes are numbered from 0 to n - 1 (inclusive).

You are also given a 2D integer array edges, where edges[i] = [node1i, node2i] denotes that there is a bidirectional edge connecting node1i and node2i in the graph.

The distance between two nodes a and b is defined to be the minimum number of edges that are needed to go from a to b.

Return an integer array answer of size n, where answer[i] is the minimum distance between the ith node and any node in the cycle.

Read more
[LeetCode] Maximum Sum Score of Array

2219. Maximum Sum Score of Array

You are given a 0-indexed integer array nums of length n.

The sum score of nums at an index i where 0 <= i < n is the maximum of:

  • The sum of the first i + 1 elements of nums.
  • The sum of the last n - i elements of nums.

Return the maximum sum score of nums at any index.

Read more
[LeetCode] Add Strings

415. Add Strings

Given two non-negative integers, num1 and num2 represented as string, return the sum of num1 and num2 as a string.

You must solve the problem without using any built-in library for handling large integers (such as BigInteger). You must also not convert the inputs to integers directly.

Read more