[LeetCode] Sum of Floored Pairs

1862. Sum of Floored Pairs

Given an integer array nums, return the sum of floor(nums[i] / nums[j]) for all pairs of indices 0 <= i, j < nums.length in the array. Since the answer may be too large, return it modulo 109 + 7.

The floor() function returns the integer part of the division.

Read more
[LeetCode] Binary Search Tree Iterator II

1586. Binary Search Tree Iterator II

Implement the BSTIterator class that represents an iterator over the in-order traversal of a binary search tree (BST):

  • BSTIterator(TreeNode root) Initializes an object of the BSTIterator class. The root of the BST is given as part of the constructor. The pointer should be initialized to a non-existent number smaller than any element in the BST.
  • boolean hasNext() Returns true if there exists a number in the traversal to the right of the pointer, otherwise returns false.
  • int next() Moves the pointer to the right, then returns the number at the pointer.
  • boolean hasPrev() Returns true if there exists a number in the traversal to the left of the pointer, otherwise returns false.
  • int prev() Moves the pointer to the left, then returns the number at the pointer.

Notice that by initializing the pointer to a non-existent smallest number, the first call to next() will return the smallest element in the BST.

You may assume that next() and prev() calls will always be valid. That is, there will be at least a next/previous number in the in-order traversal when next()/prev() is called.

Read more
[LeetCode] Trim a Binary Search Tree

669. Trim a Binary Search Tree

Given the root of a binary search tree and the lowest and highest boundaries as low and high, trim the tree so that all its elements lies in [low, high]. Trimming the tree should not change the relative structure of the elements that will remain in the tree (i.e., any node’s descendant should remain a descendant). It can be proven that there is a unique answer.

Return the root of the trimmed binary search tree. Note that the root may change depending on the given bounds.

Read more
[LeetCode] Convert Sorted Array to Binary Search Tree

108. Convert Sorted Array to Binary Search Tree

Given an integer array nums where the elements are sorted in ascending order, convert it to a height-balanced binary search tree.

A height-balanced binary tree is a binary tree in which the depth of the two subtrees of every node never differs by more than one.

Read more
[LeetCode] Serialize and Deserialize BST

449. Serialize and Deserialize BST

Serialization is converting a data structure or object into a sequence of bits so that it can be stored in a file or memory buffer, or transmitted across a network connection link to be reconstructed later in the same or another computer environment.

Design an algorithm to serialize and deserialize a binary search tree. There is no restriction on how your serialization/deserialization algorithm should work. You need to ensure that a binary search tree can be serialized to a string, and this string can be deserialized to the original tree structure.

The encoded string should be as compact as possible.

Read more
[LeetCode] Find the Kth Smallest Sum of a Matrix With Sorted Rows

1439. Find the Kth Smallest Sum of a Matrix With Sorted Rows

You are given an m x n matrix mat that has its rows sorted in non-decreasing order and an integer k.

You are allowed to choose exactly one element from each row to form an array.

Return the kth smallest array sum among all possible arrays.

Read more
[LeetCode] Closest Room

1847. Closest Room

There is a hotel with n rooms. The rooms are represented by a 2D integer array rooms where rooms[i] = [roomIdi, sizei] denotes that there is a room with room number roomIdi and size equal to sizei. Each roomIdi is guaranteed to be unique.

You are also given k queries in a 2D array queries where queries[j] = [preferredj, minSizej]. The answer to the jth query is the room number id of a room such that:

  • The room has a size of at least minSizej, and
  • abs(id - preferredj) is minimized, where abs(x) is the absolute value of x.

If there is a tie in the absolute difference, then use the room with the smallest such id. If there is no such room, the answer is -1.

Return an array answer of length k where answer[j] contains the answer to the jth query.

Read more
[LeetCode] Largest BST Subtree

333. Largest BST Subtree

Given the root of a binary tree, find the largest subtree, which is also a Binary Search Tree (BST), where the largest means subtree has the largest number of nodes.

A Binary Search Tree (BST) is a tree in which all the nodes follow the below-mentioned properties:

  • The left subtree values are less than the value of their parent (root) node’s value.
  • The right subtree values are greater than the value of their parent (root) node’s value.

Note: A subtree must include all of its descendants.

Read more
[LeetCode] Delete Tree Nodes

1273. Delete Tree Nodes

A tree rooted at node 0 is given as follows:

  • The number of nodes is nodes;
  • The value of the ith node is value[i];
  • The parent of the ith node is parent[i].

Remove every subtree whose sum of values of nodes is zero.

Return the number of the remaining nodes in the tree.

Read more
[LeetCode] Maximum Number of Consecutive Values You Can Make

1798. Maximum Number of Consecutive Values You Can Make

You are given an integer array coins of length n which represents the n coins that you own. The value of the ith coin is coins[i]. You can make some value x if you can choose some of your n coins such that their values sum up to x.

Return the maximum number of consecutive integer values that you can make with your coins starting from and including 0.

Note that you may have multiple coins of the same value.

Read more