[LeetCode] Minimum Length of String After Deleting Similar Ends

1750. Minimum Length of String After Deleting Similar Ends

Given a string s consisting only of characters ‘a’, ‘b’, and ‘c’. You are asked to apply the following algorithm on the string any number of times:

  1. Pick a non-empty prefix from the string s where all the characters in the prefix are equal.
  2. Pick a non-empty suffix from the string s where all the characters in this suffix are equal.
  3. The prefix and the suffix should not intersect at any index.
  4. The characters from the prefix and suffix must be the same.
  5. Delete both the prefix and the suffix.

Return the minimum length of s after performing the above operation any number of times (possibly zero times).

Read more
[LeetCode] Maximum Number of Non-Overlapping Substrings

1520. Maximum Number of Non-Overlapping Substrings

Given a string s of lowercase letters, you need to find the maximum number of non-empty substrings of s that meet the following conditions:

  1. The substrings do not overlap, that is for any two substrings s[i..j] and s[x..y], either j < x or i > y is true.
  2. A substring that contains a certain character c must also contain all occurrences of c.

Find the maximum number of substrings that meet the above conditions. If there are multiple solutions with the same number of substrings, return the one with minimum total length. It can be shown that there exists a unique solution of minimum total length.

Notice that you can return the substrings in any order.

Read more
[LeetCode] Construct Binary Tree from Inorder and Postorder Traversal

106. Construct Binary Tree from Inorder and Postorder Traversal

Given two integer arrays inorder and postorder where inorder is the inorder traversal of a binary tree and postorder is the postorder traversal of the same tree, construct and return the binary tree.

Read more
[LeetCode] Number of Substrings Containing All Three Characters

1358. Number of Substrings Containing All Three Characters

Given a string s consisting only of characters a, b and c.

Return the number of substrings containing at least one occurrence of all these characters a, b and c.

Read more
[LeetCode] Count Number of Nice Subarrays

1248. Count Number of Nice Subarrays

Given an array of integers nums and an integer k. A continuous subarray is called nice if there are k odd numbers on it.

Return the number of nice sub-arrays.

Read more
[LeetCode] Get Equal Substrings Within Budget

1208. Get Equal Substrings Within Budget

You are given two strings s and t of the same length and an integer maxCost.

You want to change s to t. Changing the ith character of s to ith character of t costs |s[i] - t[i]| (i.e., the absolute difference between the ASCII values of the characters).

Return the maximum length of a substring of s that can be changed to be the same as the corresponding substring of t with a cost less than or equal to maxCost. If there is no substring from s that can be changed to its corresponding substring from t, return 0.

Read more
[LeetCode] Pizza With 3n Slices

1388. Pizza With 3n Slices

There is a pizza with 3n slices of varying size, you and your friends will take slices of pizza as follows:

  • You will pick any pizza slice.
  • Your friend Alice will pick the next slice in the anti-clockwise direction of your pick.
  • Your friend Bob will pick the next slice in the clockwise direction of your pick.
  • Repeat until there are no more slices of pizzas.

Given an integer array slices that represent the sizes of the pizza slices in a clockwise direction, return the maximum possible sum of slice sizes that you can pick.

Read more
[LeetCode] Tallest Billboard

956. Tallest Billboard

You are installing a billboard and want it to have the largest height. The billboard will have two steel supports, one on each side. Each steel support must be an equal height.

You are given a collection of rods that can be welded together. For example, if you have rods of lengths 1, 2, and 3, you can weld them together to make a support of length 6.

Return the largest possible height of your billboard installation. If you cannot support the billboard, return 0.

Read more
[LeetCode] Contain Virus

749. Contain Virus

A virus is spreading rapidly, and your task is to quarantine the infected area by installing walls.

The world is modeled as an m x n binary grid isInfected, where isInfected[i][j] == 0 represents uninfected cells, and isInfected[i][j] == 1 represents cells contaminated with the virus. A wall (and only one wall) can be installed between any two 4-directionally adjacent cells, on the shared boundary.

Every night, the virus spreads to all neighboring cells in all four directions unless blocked by a wall. Resources are limited. Each day, you can install walls around only one region (i.e., the affected area (continuous block of infected cells) that threatens the most uninfected cells the following night). There will never be a tie.

Return the number of walls used to quarantine all the infected regions. If the world will become fully infected, return the number of walls used.

Read more
[LeetCode] Regions Cut By Slashes

959. Regions Cut By Slashes

An n x n grid is composed of 1 x 1 squares where each 1 x 1 square consists of a ‘/‘, ‘\’, or blank space ‘ ‘. These characters divide the square into contiguous regions.

Given the grid grid represented as a string array, return the number of regions.

Note that backslash characters are escaped, so a ‘\’ is represented as ‘\‘.

Read more