[Codeforces] Experimental Educational Round: VolBIT Formulas Blitz H. BenchesRead more
[LeetCode] Delete the Middle Node of a Linked List

2095. Delete the Middle Node of a Linked List

You are given the head of a linked list. Delete the middle node, and return the head of the modified linked list.

The middle node of a linked list of size n is the ⌊n / 2⌋th node from the start using 0-based indexing, where ⌊x⌋ denotes the largest integer less than or equal to x.

  • For n = 1, 2, 3, 4, and 5, the middle nodes are 0, 1, 1, 2, and 2, respectively.
Read more
[LeetCode] Minimum Suffix Flips

1529. Minimum Suffix Flips

You are given a 0-indexed binary string target of length n. You have another binary string s of length n that is initially set to all zeros. You want to make s equal to target.

In one operation, you can pick an index i where 0 <= i < n and flip all bits in the inclusive range [i, n - 1]. Flip means changing ‘0’ to ‘1’ and ‘1’ to ‘0’.

Return the minimum number of operations needed to make s equal to target

Read more
[LeetCode] XOR Queries of a Subarray

1310. XOR Queries of a Subarray

You are given an array arr of positive integers. You are also given the array queries where queries[i] = [lefti, righti].

For each query i compute the XOR of elements from lefti to righti (that is, arr[lefti] XOR arr[lefti + 1] XOR … XOR arr[righti] ).

Return an array answer where answer[i] is the answer to the ith query.

Read more
[LeetCode] Maximum Score From Removing Stones

1753. Maximum Score From Removing Stones

You are playing a solitaire game with three piles of stones of sizes a​​​​​​, b,​​​​​​ and c​​​​​​ respectively. Each turn you choose two different non-empty piles, take one stone from each, and add 1 point to your score. The game stops when there are fewer than two non-empty piles (meaning there are no more available moves).

Given three integers a​​​​​, b,​​​​​ and c​​​​​, return the maximum score you can get.

Read more
[LeetCode] Zuma Game

488. Zuma Game

You are playing a variation of the game Zuma.

In this variation of Zuma, there is a single row of colored balls on a board, where each ball can be colored red ‘R’, yellow ‘Y’, blue ‘B’, green ‘G’, or white ‘W’. You also have several colored balls in your hand.

Your goal is to clear all of the balls from the board. On each turn:

  • Pick any ball from your hand and insert it in between two balls in the row or on either end of the row.
  • If there is a group of three or more consecutive balls of the same color, remove the group of balls from the board.
  • If this removal causes more groups of three or more of the same color to form, then continue removing each group until there are none left.
  • If there are no more balls on the board, then you win the game.
  • Repeat this process until you either win or do not have any more balls in your hand.

Given a string board, representing the row of balls on the board, and a string hand, representing the balls in your hand, return the minimum number of balls you have to insert to clear all the balls from the board. If you cannot clear all the balls from the board using the balls in your hand, return -1.

Read more
[AtCoder] E - Picking GoodsRead more
[AtCoder] D - Moving PieceRead more
[AtCoder] D - Chat in a CircleRead more
[AtCoder] C - H and VRead more