1599. Maximum Profit of Operating a Centennial Wheel
You are the operator of a Centennial Wheel that has four gondolas, and each gondola has room for up to four people. You have the ability to rotate the gondolas counterclockwise, which costs you runningCost dollars.
You are given an array customers of length n where customers[i] is the number of new customers arriving just before the ith rotation (0-indexed). This means you must rotate the wheel i times before the customers[i] customers arrive. You cannot make customers wait if there is room in the gondola. Each customer pays boardingCost dollars when they board on the gondola closest to the ground and will exit once that gondola reaches the ground again.
You can stop the wheel at any time, including before serving all customers. If you decide to stop serving customers, all subsequent rotations are free in order to get all the customers down safely. Note that if there are currently more than four customers waiting at the wheel, only four will board the gondola, and the rest will wait for the next rotation.
Return the minimum number of rotations you need to perform to maximize your profit. If there is no scenario where the profit is positive, return -1.
1604. Alert Using Same Key-Card Three or More Times in a One Hour Period
LeetCode company workers use key-cards to unlock office doors. Each time a worker uses their key-card, the security system saves the worker’s name and the time when it was used. The system emits an alert if any worker uses the key-card three or more times in a one-hour period.
You are given a list of strings keyName and keyTime where [keyName[i], keyTime[i]] corresponds to a person’s name and the time when their key-card was used in a single day.
Access times are given in the 24-hour time format “HH:MM”, such as “23:51” and “09:49”.
Return a list of unique worker names who received an alert for frequent keycard use. Sort the names in ascending order alphabetically.
Notice that “10:00” - “11:00” is considered to be within a one-hour period, while “22:51” - “23:52” is not considered to be within a one-hour period.
1625. Lexicographically Smallest String After Applying Operations
You are given a string s of even length consisting of digits from 0 to 9, and two integers a and b.
You can apply either of the following two operations any number of times and in any order on s:
- Add a to all odd indices of s (0-indexed). Digits post 9 are cycled back to 0. For example, if s = “3456” and a = 5, s becomes “3951”.
- Rotate s to the right by b positions. For example, if s = “3456” and b = 1, s becomes “6345”.
Return the lexicographically smallest string you can obtain by applying the above operations any number of times on s.
A string a is lexicographically smaller than a string b (of the same length) if in the first position where a and b differ, string a has a letter that appears earlier in the alphabet than the corresponding letter in b. For example, “0158” is lexicographically smaller than “0190” because the first position they differ is at the third letter, and ‘5’ comes before ‘9’.
1685. Sum of Absolute Differences in a Sorted Array
You are given an integer array nums sorted in non-decreasing order.
Build and return an integer array result with the same length as nums such that result[i] is equal to the summation of absolute differences between nums[i] and all the other elements in the array.
In other words, result[i] is equal to sum(|nums[i]-nums[j]|) where 0 <= j < nums.length and j != i (0-indexed).