2556. Disconnect Path in a Binary Matrix by at Most One Flip
You are given a 0-indexed m x n binary matrix grid. You can move from a cell (row, col) to any of the cells (row + 1, col) or (row, col + 1) that has the value 1. The matrix is disconnected if there is no path from (0, 0) to (m - 1, n - 1).
You can flip the value of at most one (possibly none) cell. You cannot flip the cells (0, 0) and (m - 1, n - 1).
Return true if it is possible to make the matrix disconnect or false otherwise.
Note that flipping a cell changes its value from 0 to 1 or from 1 to 0.
2557. Maximum Number of Integers to Choose From a Range II
You are given an integer array banned and two integers n and maxSum. You are choosing some number of integers following the below rules:
- The chosen integers have to be in the range [1, n].
- Each integer can be chosen at most once.
- The chosen integers should not be in the array banned.
- The sum of the chosen integers should not exceed maxSum.
Return the maximum number of integers you can choose following the mentioned rules.
2559. Count Vowel Strings in Ranges
You are given a 0-indexed array of strings words and a 2D array of integers queries.
Each query queries[i] = [li, ri] asks us to find the number of strings present in the range li to ri (both inclusive) of words that start and end with a vowel.
Return an array ans of size queries.length, where ans[i] is the answer to the ith query.
Note that the vowel letters are ‘a’, ‘e’, ‘i’, ‘o’, and ‘u’.
There are several consecutive houses along a street, each of which has some money inside. There is also a robber, who wants to steal money from the homes, but he refuses to steal from adjacent homes.
The capability of the robber is the maximum amount of money he steals from one house of all the houses he robbed.
You are given an integer array nums representing how much money is stashed in each house. More formally, the ith house from the left has nums[i] dollars.
You are also given an integer k, representing the minimum number of houses the robber will steal from. It is always possible to steal at least k houses.
Return the minimum capability of the robber out of all the possible ways to steal at least k houses.
You have two fruit baskets containing n fruits each. You are given two 0-indexed integer arrays basket1 and basket2 representing the cost of fruit in each basket. You want to make both baskets equal. To do so, you can use the following operation as many times as you want:
- Chose two indices i and j, and swap the ith fruit of basket1 with the jth fruit of basket2.
- The cost of the swap is min(basket1[i],basket2[j]).
Two baskets are considered equal if sorting them according to the fruit cost makes them exactly the same baskets.
Return the minimum cost to make both the baskets equal or -1 if impossible.