[Codeforces] Round 191 (Div. 2) C. Magic FiveRead more
[LeetCode] Smallest Missing Non-negative Integer After Operations

2598. Smallest Missing Non-negative Integer After Operations

You are given a 0-indexed integer array nums and an integer value.

In one operation, you can add or subtract value from any element of nums.

  • For example, if nums = [1,2,3] and value = 2, you can choose to subtract value from nums[0] to make nums = [-1,2,3].

The MEX (minimum excluded) of an array is the smallest missing non-negative integer in it.

  • For example, the MEX of [-1,2,3] is 0 while the MEX of [1,0,3] is 2.

Return the maximum MEX of nums after applying the mentioned operation any number of times.

Read more
[LeetCode] The Number of Beautiful Subsets

2597. The Number of Beautiful Subsets

You are given an array nums of positive integers and a positive integer k.

A subset of nums is beautiful if it does not contain two integers with an absolute difference equal to k.

Return the number of non-empty beautiful subsets of the array nums.

A subset of nums is an array that can be obtained by deleting some (possibly none) elements from nums. Two subsets are different if and only if the chosen indices to delete are different.

Read more
[LeetCode] Check Knight Tour Configuration

2596. Check Knight Tour Configuration

There is a knight on an n x n chessboard. In a valid configuration, the knight starts at the top-left cell of the board and visits every cell on the board exactly once.

You are given an n x n integer matrix grid consisting of distinct integers from the range [0, n * n - 1] where grid[row][col] indicates that the cell (row, col) is the grid[row][col]th cell that the knight visited. The moves are 0-indexed.

Return true if grid represents a valid configuration of the knight’s movements or false otherwise.

Note that a valid knight move consists of moving two squares vertically and one square horizontally, or two squares horizontally and one square vertically. The figure below illustrates all the possible eight moves of a knight from some cell.

Read more
[LeetCode] Number of Even and Odd Bits

2595. Number of Even and Odd Bits

You are given a positive integer n.

Let even denote the number of even indices in the binary representation of n (0-indexed) with value 1.

Let odd denote the number of odd indices in the binary representation of n (0-indexed) with value 1.

Return an integer array answer where answer = [even, odd].

Read more
[LeetCode] Minimum Time to Repair Cars

2594. Minimum Time to Repair Cars

You are given an integer array ranks representing the ranks of some mechanics. ranksi is the rank of the ith mechanic. A mechanic with a rank r can repair n cars in r * n2 minutes.

You are also given an integer cars representing the total number of cars waiting in the garage to be repaired.

Return the minimum time taken to repair all the cars.

Note: All the mechanics can repair the cars simultaneously.

Read more
[LeetCode] Find Score of an Array After Marking All Elements

2593. Find Score of an Array After Marking All Elements

You are given an array nums consisting of positive integers.

Starting with score = 0, apply the following algorithm:

  • Choose the smallest integer of the array that is not marked. If there is a tie, choose the one with the smallest index.
  • Add the value of the chosen integer to score.
  • Mark the chosen element and its two adjacent elements if they exist.
  • Repeat until all the array elements are marked.

Return the score you get after applying the above algorithm.

Read more
[LeetCode] Maximize Greatness of an Array

2592. Maximize Greatness of an Array

You are given a 0-indexed integer array nums. You are allowed to permute nums into a new array perm of your choosing.

We define the greatness of nums be the number of indices 0 <= i < nums.length for which perm[i] > nums[i].

Return the maximum possible greatness you can achieve after permuting nums.

Read more
[LeetCode] Distribute Money to Maximum Children

2591. Distribute Money to Maximum Children

You are given an integer money denoting the amount of money (in dollars) that you have and another integer children denoting the number of children that you must distribute the money to.

You have to distribute the money according to the following rules:

  • All money must be distributed.
  • Everyone must receive at least 1 dollar.
  • Nobody receives 4 dollars.

Return the maximum number of children who may receive exactly 8 dollars if you distribute the money according to the aforementioned rules. If there is no way to distribute the money, return -1.

Read more
[CS Academy] Binary IsomorphismRead more