[AtCoder] C - Harmonic MeanRead more
[LeetCode] Maximum Elegance of a K-Length Subsequence

2813. Maximum Elegance of a K-Length Subsequence

You are given a 0-indexed 2D integer array items of length n and an integer k.

items[i] = [profiti, categoryi], where profiti and categoryi denote the profit and category of the ith item respectively.

Let’s define the elegance of a subsequence of items as total_profit + distinct_categories2, where total_profit is the sum of all profits in the subsequence, and distinct_categories is the number of distinct categories from all the categories in the selected subsequence.

Your task is to find the maximum elegance from all subsequences of size k in items.

Return an integer denoting the maximum elegance of a subsequence of items with size exactly k.

Note: A subsequence of an array is a new array generated from the original array by deleting some elements (possibly none) without changing the remaining elements’ relative order.

Read more
[LeetCode] Find the Safest Path in a Grid

2812. Find the Safest Path in a Grid

You are given a 0-indexed 2D matrix grid of size n x n, where (r, c) represents:

  • A cell containing a thief if grid[r][c] = 1
  • An empty cell if grid[r][c] = 0

You are initially positioned at cell (0, 0). In one move, you can move to any adjacent cell in the grid, including cells containing thieves.

The safeness factor of a path on the grid is defined as the minimum manhattan distance from any cell in the path to any thief in the grid.

Return the maximum safeness factor of all paths leading to cell (n - 1, n - 1).

An adjacent cell of cell (r, c), is one of the cells (r, c + 1), (r, c - 1), (r + 1, c) and (r - 1, c) if it exists.

The Manhattan distance between two cells (a, b) and (x, y) is equal to |a - x| + |b - y|, where |val| denotes the absolute value of val.

Read more
[LeetCode] Check if it is Possible to Split Array

2811. Check if it is Possible to Split Array

You are given an array nums of length n and an integer m. You need to determine if it is possible to split the array into n non-empty arrays by performing a series of steps.

In each step, you can select an existing array (which may be the result of previous steps) with a length of at least two and split it into two subarrays, if, for each resulting subarray, at least one of the following holds:

  • The length of the subarray is one, or
  • The sum of elements of the subarray is greater than or equal to m.

Return true if you can split the given array into n arrays, otherwise return false.

Note: A subarray is a contiguous non-empty sequence of elements within an array.

Read more
[LeetCode] Faulty Keyboard

2810. Faulty Keyboard

Your laptop keyboard is faulty, and whenever you type a character 'i' on it, it reverses the string that you have written. Typing other characters works as expected.

You are given a 0-indexed string s, and you type each character of s using your faulty keyboard.

Return the final string that will be present on your laptop screen.

Read more
[AtCoder] C - Mex Game on TreeRead more
[AtCoder] G - Banned Substrings Read more
[AtCoder] F - Shift TableRead more
[LeetCode] Account Balance After Rounded Purchase

2806. Account Balance After Rounded Purchase

Initially, you have a bank account balance of 100 dollars.

You are given an integer purchaseAmount representing the amount you will spend on a purchase in dollars.

At the store where you will make the purchase, the purchase amount is rounded to the nearest multiple of 10. In other words, you pay a non-negative amount, roundedAmount, such that roundedAmount is a multiple of 10 and abs(roundedAmount - purchaseAmount) is minimized.

If there is more than one nearest multiple of 10, the largest multiple is chosen.

Return an integer denoting your account balance after making a purchase worth purchaseAmount dollars from the store.

Note: 0 is considered to be a multiple of 10 in this problem.

Read more
[LeetCode] Insert Greatest Common Divisors in Linked List

2807. Insert Greatest Common Divisors in Linked List

Given the head of a linked list head, in which each node contains an integer value.

Between every pair of adjacent nodes, insert a new node with a value equal to the greatest common divisor of them.

Return the linked list after insertion.

The greatest common divisor of two numbers is the largest positive integer that evenly divides both numbers.

Read more