[LeetCode] Compare Version Numbers

165. Compare Version Numbers

Given two version numbers, version1 and version2, compare them.

Version numbers consist of one or more revisions joined by a dot ‘.’. Each revision consists of digits and may contain leading zeros. Every revision contains at least one character. Revisions are 0-indexed from left to right, with the leftmost revision being revision 0, the next revision being revision 1, and so on. For example 2.5.33 and 0.1 are valid version numbers.

To compare version numbers, compare their revisions in left-to-right order. Revisions are compared using their integer value ignoring any leading zeros. This means that revisions 1 and 001 are considered equal. If a version number does not specify a revision at an index, then treat the revision as 0. For example, version 1.0 is less than version 1.1 because their revision 0s are the same, but their revision 1s are 0 and 1 respectively, and 0 < 1.

Return the following:

  • If version1 < version2, return -1.
  • If version1 > version2, return 1.
  • Otherwise, return 0.
Read more
[LeetCode] Maximum Number of Events That Can Be Attended

1353. Maximum Number of Events That Can Be Attended

Given an array of events where events[i] = [startDayi, endDayi]. Every event i starts at startDayi and ends at endDayi.

You can attend an event i at any day d where startTimei <= d <= endTimei. Notice that you can only attend one event at any time d.

Return the maximum number of events you can attend.

Read more
[LeetCode] Circular Array Loop

457. Circular Array Loop

You are given a circular array nums of positive and negative integers. If a number k at an index is positive, then move forward k steps. Conversely, if it’s negative (-k), move backward k steps. Since the array is circular, you may assume that the last element’s next element is the first element, and the first element’s previous element is the last element.

Determine if there is a loop (or a cycle) in nums. A cycle must start and end at the same index and the cycle’s length > 1. Furthermore, movements in a cycle must all follow a single direction. In other words, a cycle must not consist of both forward and backward movements.

Read more
[LeetCode] Ways to Split Array Into Three Subarrays

1712. Ways to Split Array Into Three Subarrays

A split of an integer array is good if:

  • The array is split into three non-empty contiguous subarrays - named left, mid, right respectively from left to right.
  • The sum of the elements in left is less than or equal to the sum of the elements in mid, and the sum of the elements in mid is less than or equal to the sum of the elements in right.

Given nums, an array of non-negative integers, return the number of good ways to split nums. As the number may be too large, return it modulo 109 + 7.

Read more
[LeetCode] Additive Number

306. Additive Number

Additive number is a string whose digits can form additive sequence.

A valid additive sequence should contain at least three numbers. Except for the first two numbers, each subsequent number in the sequence must be the sum of the preceding two.

Given a string containing only digits ‘0’-‘9’, write a function to determine if it’s an additive number.

Note: Numbers in the additive sequence cannot have leading zeros, so sequence 1, 2, 03 or 1, 02, 3 is invalid.

Read more
[LeetCode] Can I Win

464. Can I Win

In the “100 game” two players take turns adding, to a running total, any integer from 1 to 10. The player who first causes the running total to reach or exceed 100 wins.

What if we change the game so that players cannot re-use integers?

For example, two players might take turns drawing from a common pool of numbers from 1 to 15 without replacement until they reach a total >= 100.

Given two integers maxChoosableInteger and desiredTotal, return true if the first player to move can force a win, otherwise return false. Assume both players play optimally.

Read more
[LeetCode] Surrounded Regions

130. Surrounded Regions

Given a 2D board containing ‘X’ and ‘O’ (the letter O), capture all regions surrounded by ‘X’.

A region is captured by flipping all ‘O’s into ‘X’s in that surrounded region.

Example:

1
2
3
4
X X X X
X O O X
X X O X
X O X X

After running your function, the board should be:

1
2
3
4
X X X X
X X X X
X X X X
X O X X

Explanation:

Surrounded regions shouldn’t be on the border, which means that any ‘O’ on the border of the board are not flipped to ‘X’. Any ‘O’ that is not on the border and it is not connected to an ‘O’ on the border will be flipped to ‘X’. Two cells are connected if they are adjacent cells connected horizontally or vertically.

Read more
[LeetCode] Validate Binary Search Tree

98. Validate Binary Search Tree

Given the root of a binary tree, determine if it is a valid binary search tree (BST).

A valid BST is defined as follows:

  • The left subtree of a node contains only nodes with keys less than the node’s key.
  • The right subtree of a node contains only nodes with keys greater than the node’s key.
  • Both the left and right subtrees must also be binary search trees.
Read more
[LeetCode] Remove K Digits

402. Remove K Digits

Given a non-negative integer num represented as a string, remove k digits from the number so that the new number is the smallest possible.

Note:

  • The length of num is less than 10002 and will be ≥ k.
  • The given num does not contain any leading zero.
Read more
[LeetCode] Decoded String at Index

880. Decoded String at Index

An encoded string S is given. To find and write the decoded string to a tape, the encoded string is read one character at a time and the following steps are taken:

  • If the character read is a letter, that letter is written onto the tape.
  • If the character read is a digit (say d), the entire current tape is repeatedly written d-1 more times in total.

Now for some encoded string S, and an index K, find and return the K-th letter (1 indexed) in the decoded string.

Read more