[LeetCode] Keys and Rooms

841. Keys and Rooms

There are N rooms and you start in room 0. Each room has a distinct number in 0, 1, 2, …, N-1, and each room may have some keys to access the next room.

Formally, each room i has a list of keys rooms[i], and each key rooms[i][j] is an integer in [0, 1, …, N-1] where N = rooms.length. A key rooms[i][j] = v opens the room with number v.

Initially, all the rooms start locked (except for room 0).

You can walk back and forth between rooms freely.

Return true if and only if you can enter every room.

Read more
[LeetCode] Wiggle Subsequence

376. Wiggle Subsequence

Given an integer array nums, return the length of the longest wiggle sequence.

A wiggle sequence is a sequence where the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a wiggle sequence.

  • For example, [1, 7, 4, 9, 2, 5] is a wiggle sequence because the differences (6, -3, 5, -7, 3) are alternately positive and negative.
  • In contrast, [1, 4, 7, 2, 5] and [1, 7, 4, 5, 5] are not wiggle sequences, the first because its first two differences are positive and the second because its last difference is zero.

A subsequence is obtained by deleting some elements (eventually, also zero) from the original sequence, leaving the remaining elements in their original order.

Read more
[LeetCode] Generate Random Point in a Circle

478. Generate Random Point in a Circle

Given the radius and x-y positions of the center of a circle, write a function randPoint which generates a uniform random point in the circle.

Note:

  • input and output values are in floating-point.
  • radius and x-y position of the center of the circle is passed into the class constructor.
  • a point on the circumference of the circle is considered to be in the circle.
  • randPoint returns a size 2 array containing x-position and y-position of the random point, in that order.
Read more
[LeetCode] Best Time to Buy and Sell Stock with Transaction Fee

714. Best Time to Buy and Sell Stock with Transaction Fee

You are given an array prices where prices[i] is the price of a given stock on the ith day, and an integer fee representing a transaction fee.

Find the maximum profit you can achieve. You may complete as many transactions as you like, but you need to pay the transaction fee for each transaction.

Note: You may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).

Read more
[LeetCode] Encode and Decode TinyURL

535. Encode and Decode TinyURL

Note: This is a companion problem to the System Design problem: Design TinyURL.
TinyURL is a URL shortening service where you enter a URL such as https://leetcode.com/problems/design-tinyurl and it returns a short URL such as http://tinyurl.com/4e9iAk.

Design the encode and decode methods for the TinyURL service. There is no restriction on how your encode/decode algorithm should work. You just need to ensure that a URL can be encoded to a tiny URL and the tiny URL can be decoded to the original URL.

Read more
[LeetCode] Construct Binary Tree from String

536. Construct Binary Tree from String

You need to construct a binary tree from a string consisting of parenthesis and integers.

The whole input represents a binary tree. It contains an integer followed by zero, one or two pairs of parenthesis. The integer represents the root’s value and a pair of parenthesis contains a child binary tree with the same structure.

You always start to construct the left child node of the parent first if it exists.

Read more
[LeetCode] Swapping Nodes in a Linked List

1721. Swapping Nodes in a Linked List

You are given the head of a linked list, and an integer k.

Return the head of the linked list after swapping the values of the kth node from the beginning and the kth node from the end (the list is 1-indexed).

Read more
[LeetCode] Binary Trees With Factors

823. Binary Trees With Factors

Given an array of unique integers, arr, where each integer arr[i] is strictly greater than 1.

We make a binary tree using these integers, and each number may be used for any number of times. Each non-leaf node’s value should be equal to the product of the values of its children.

Return the number of binary trees we can make. The answer may be too large so return the answer modulo 109 + 7.

Read more
[LeetCode] Check If a String Contains All Binary Codes of Size K

1461. Check If a String Contains All Binary Codes of Size K

Given a binary string s and an integer k.

Return True if every binary code of length k is a substring of s. Otherwise, return False.

Read more
[LeetCode] Coin Change

322. Coin Change

You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1.

You may assume that you have an infinite number of each kind of coin.

Read more