[LeetCode] Meeting Scheduler

1229. Meeting Scheduler

Given the availability time slots arrays slots1 and slots2 of two people and a meeting duration duration, return the earliest time slot that works for both of them and is of duration duration.

If there is no common time slot that satisfies the requirements, return an empty array.

The format of a time slot is an array of two elements [start, end] representing an inclusive time range from start to end.

It is guaranteed that no two availability slots of the same person intersect with each other. That is, for any two time slots [start1, end1] and [start2, end2] of the same person, either start1 > end2 or start2 > end1.

Read more
LeetCode Contest World Record 200's Reached

후기

Read more
[LeetCode] Check if Word Equals Summation of Two Words

1880. Check if Word Equals Summation of Two Words

The letter value of a letter is its position in the alphabet starting from 0 (i.e. ‘a’ -> 0, ‘b’ -> 1, ‘c’ -> 2, etc.).

The numerical value of some string of lowercase English letters s is the concatenation of the letter values of each letter in s, which is then converted into an integer.

  • For example, if s = “acb”, we concatenate each letter’s letter value, resulting in “021”. After converting it, we get 21.

You are given three strings firstWord, secondWord, and targetWord, each consisting of lowercase English letters ‘a’ through ‘j’ inclusive.

Return true if the summation of the numerical values of firstWord and secondWord equals the numerical value of targetWord, or false otherwise.

Read more
[LeetCode] Maximum Value after Insertion

1881. Maximum Value after Insertion

You are given a very large integer n, represented as a string,​​​​​​ and an integer digit x. The digits in n and the digit x are in the inclusive range [1, 9], and n may represent a negative number.

You want to maximize n’s numerical value by inserting x anywhere in the decimal representation of n​​​​​​. You cannot insert x to the left of the negative sign.

  • For example, if n = 73 and x = 6, it would be best to insert it between 7 and 3, making n = 763.
  • If n = -55 and x = 2, it would be best to insert it before the first 5, making n = -255.

Return a string representing the maximum value of n​​​​​​ after the insertion.

Read more
[LeetCode] Process Tasks Using Servers

1882. Process Tasks Using Servers

You are given two 0-indexed integer arrays servers and tasks of lengths n​​​​​​ and m​​​​​​ respectively. servers[i] is the weight of the i​​​​​​th​​​​ server, and tasks[j] is the time needed to process the j​​​​​​th​​​​ task in seconds.

You are running a simulation system that will shut down after all tasks are processed. Each server can only process one task at a time. You will be able to process the jth task starting from the jth second beginning with the 0th task at second 0. To process task j, you assign it to the server with the smallest weight that is free, and in case of a tie, choose the server with the smallest index. If a free server gets assigned task j at second t,​​​​​​ it will be free again at the second t + tasks[j].

If there are no free servers, you must wait until one is free and execute the free tasks as soon as possible. If multiple tasks need to be assigned, assign them in order of increasing index.

You may assign multiple tasks at the same second if there are multiple free servers.

Build an array ans​​​​ of length m, where ans[j] is the index of the server the j​​​​​​th task will be assigned to.

Return the array ans​​​​.

Read more
[LeetCode] Minimum Skips to Arrive at Meeting On Time

1883. Minimum Skips to Arrive at Meeting On Time

You are given an integer hoursBefore, the number of hours you have to travel to your meeting. To arrive at your meeting, you have to travel through n roads. The road lengths are given as an integer array dist of length n, where dist[i] describes the length of the ith road in kilometers. In addition, you are given an integer speed, which is the speed (in km/h) you will travel at.

After you travel road i, you must rest and wait for the next integer hour before you can begin traveling on the next road. Note that you do not have to rest after traveling the last road because you are already at the meeting.

  • For example, if traveling a road takes 1.4 hours, you must wait until the 2 hour mark before traveling the next road. If traveling a road takes exactly 2 hours, you do not need to wait.

However, you are allowed to skip some rests to be able to arrive on time, meaning you do not need to wait for the next integer hour. Note that this means you may finish traveling future roads at different hour marks.

  • For example, suppose traveling the first road takes 1.4 hours and traveling the second road takes 0.6 hours. Skipping the rest after the first road will mean you finish traveling the second road right at the 2 hour mark, letting you start traveling the third road immediately.

Return the minimum number of skips required to arrive at the meeting on time, or -1 if it is impossible.

Read more
[LeetCode] Count Number of Teams

1395. Count Number of Teams

There are n soldiers standing in a line. Each soldier is assigned a unique rating value.

You have to form a team of 3 soldiers amongst them under the following rules:

  • Choose 3 soldiers with index (i, j, k) with rating (rating[i], rating[j], rating[k]).
  • A team is valid if: (rating[i] < rating[j] < rating[k]) or (rating[i] > rating[j] > rating[k]) where (0 <= i < j < k < n).

Return the number of teams you can form given the conditions. (soldiers can be part of multiple teams).

Read more
[LeetCode] Next Greater Element II

503. Next Greater Element II

Given a circular integer array nums (i.e., the next element of nums[nums.length - 1] is nums[0]), return the next greater number for every element in nums.

The next greater number of a number x is the first greater number to its traversing-order next in the array, which means you could search circularly to find its next greater number. If it doesn’t exist, return -1 for this number.

Read more
[LeetCode] House Robber

198. House Robber

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security systems connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given an integer array nums representing the amount of money of each house, return the maximum amount of money you can rob tonight without alerting the police.

Read more
[LeetCode] Longest Increasing Subsequence

300. Longest Increasing Subsequence

Given an integer array nums, return the length of the longest strictly increasing subsequence.

A subsequence is a sequence that can be derived from an array by deleting some or no elements without changing the order of the remaining elements. For example, [3,6,2,7] is a subsequence of the array [0,3,1,6,2,2,7].

Read more