[LeetCode] Minimum Non-Zero Product of the Array Elements

1969. Minimum Non-Zero Product of the Array Elements

You are given a positive integer p. Consider an array nums (1-indexed) that consists of the integers in the inclusive range [1, 2p - 1] in their binary representations. You are allowed to do the following operation any number of times:

  • Choose two elements x and y from nums.
  • Choose a bit in x and swap it with its corresponding bit in y. Corresponding bit refers to the bit that is in the same position in the other integer.

For example, if x = 1101 and y = 0011, after swapping the 2nd bit from the right, we have x = 1111 and y = 0001.

Find the minimum non-zero product of nums after performing the above operation any number of times. Return this product modulo 109 + 7.

Note: The answer should be the minimum product before the modulo operation is done.

Read more
[LeetCode] Minimum Number of Work Sessions to Finish the Tasks

1986. Minimum Number of Work Sessions to Finish the Tasks

There are n tasks assigned to you. The task times are represented as an integer array tasks of length n, where the ith task takes tasks[i] hours to finish. A work session is when you work for at most sessionTime consecutive hours and then take a break.

You should finish the given tasks in a way that satisfies the following conditions:

  • If you start a task in a work session, you must complete it in the same work session.
  • You can start a new task immediately after finishing the previous one.
  • You may complete the tasks in any order.

Given tasks and sessionTime, return the minimum number of work sessions needed to finish all the tasks following the conditions above.

The tests are generated such that sessionTime is greater than or equal to the maximum element in tasks[i].

Read more
[LeetCode] Maximum Value at a Given Index in a Bounded Array

1802. Maximum Value at a Given Index in a Bounded Array

You are given three positive integers: n, index, and maxSum. You want to construct an array nums (0-indexed) that satisfies the following conditions:

  • nums.length == n
  • nums[i] is a positive integer where 0 <= i < n.
  • abs(nums[i] - nums[i+1]) <= 1 where 0 <= i < n-1.
  • The sum of all the elements of nums does not exceed maxSum.
  • nums[index] is maximized.

Return nums[index] of the constructed array.

Note that abs(x) equals x if x >= 0, and -x otherwise.

Read more
[LeetCode] The Number of Weak Characters in the Game

1996. The Number of Weak Characters in the Game

You are playing a game that contains multiple characters, and each of the characters has two main properties: attack and defense. You are given a 2D integer array properties where properties[i] = [attacki, defensei] represents the properties of the ith character in the game.

A character is said to be weak if any other character has both attack and defense levels strictly greater than this character’s attack and defense levels. More formally, a character i is said to be weak if there exists another character j where attackj > attacki and defensej > defensei.

Return the number of weak characters.

Read more
[LeetCode] Stone Game IX

2029. Stone Game IX

Alice and Bob continue their games with stones. There is a row of n stones, and each stone has an associated value. You are given an integer array stones, where stones[i] is the value of the ith stone.

Alice and Bob take turns, with Alice starting first. On each turn, the player may remove any stone from stones. The player who removes a stone loses if the sum of the values of all removed stones is divisible by 3. Bob will win automatically if there are no remaining stones (even if it is Alice’s turn).

Assuming both players play optimally, return true if Alice wins and false if Bob wins.

Read more
[LeetCode] Minimum Absolute Sum Difference

1818. Minimum Absolute Sum Difference

You are given two positive integer arrays nums1 and nums2, both of length n.

The absolute sum difference of arrays nums1 and nums2 is defined as the sum of |nums1[i] - nums2[i]| for each 0 <= i < n (0-indexed).

You can replace at most one element of nums1 with any other element in nums1 to minimize the absolute sum difference.

Return the minimum absolute sum difference after replacing at most one element in the array nums1. Since the answer may be large, return it modulo 109 + 7.

|x| is defined as:

  • x if x >= 0, or
  • -x if x < 0.
Read more
[LeetCode] Non-decreasing Array

665. Non-decreasing Array

Given an array nums with n integers, your task is to check if it could become non-decreasing by modifying at most one element.

We define an array is non-decreasing if nums[i] <= nums[i + 1] holds for every i (0-based) such that (0 <= i <= n - 2).

Read more
[LeetCode] Walking Robot Simulation

874. Walking Robot Simulation

A robot on an infinite XY-plane starts at point (0, 0) facing north. The robot can receive a sequence of these three possible types of commands:

  • -2: Turn left 90 degrees.
  • -1: Turn right 90 degrees.
  • 1 <= k <= 9: Move forward k units, one unit at a time.

Some of the grid squares are obstacles. The ith obstacle is at grid point obstacles[i] = (xi, yi). If the robot runs into an obstacle, then it will instead stay in its current location and move on to the next command.

Return the maximum Euclidean distance that the robot ever gets from the origin squared (i.e. if the distance is 5, return 25).

Note:

  • North means +Y direction.
  • East means +X direction.
  • South means -Y direction.
  • West means -X direction.
Read more
[LeetCode] Walking Robot Simulation II

2069. Walking Robot Simulation II

A width x height grid is on an XY-plane with the bottom-left cell at (0, 0) and the top-right cell at (width - 1, height - 1). The grid is aligned with the four cardinal directions (“North”, “East”, “South”, and “West”). A robot is initially at cell (0, 0) facing direction “East”.

The robot can be instructed to move for a specific number of steps. For each step, it does the following.

  1. Attempts to move forward one cell in the direction it is facing.
  2. If the cell the robot is moving to is out of bounds, the robot instead turns 90 degrees counterclockwise and retries the step.

After the robot finishes moving the number of steps required, it stops and awaits the next instruction.

Implement the Robot class:

  • Robot(int width, int height) Initializes the width x height grid with the robot at (0, 0) facing “East”.
  • void step(int num) Instructs the robot to move forward num steps.
  • int[] getPos() Returns the current cell the robot is at, as an array of length 2, [x, y].
  • String getDir() Returns the current direction of the robot, “North”, “East”, “South”, or “West”.
Read more
[LeetCode] 370. Range Addition

370. Range Addition

You are given an integer length and an array updates where updates[i] = [startIdxi, endIdxi, inci].

You have an array arr of length length with all zeros, and you have some operation to apply on arr. In the ith operation, you should increment all the elements arr[startIdxi], arr[startIdxi + 1], …, arr[endIdxi] by inci.

Return arr after applying all the updates.

Read more