[AtCoder] E - Minimize Sum of Distances

E - Minimize Sum of Distances

  • Time :
  • Space :
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
#include <bits/stdc++.h>

#pragma optimization_level 3
#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math,O3")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx")
#pragma GCC optimize("Ofast")//Comment optimisations for interactive problems (use endl)
#pragma GCC target("avx,avx2,fma")
#pragma GCC optimization ("unroll-loops")

using namespace std;

struct PairHash {inline std::size_t operator()(const std::pair<long long, long long> &v) const { return v.first * 31ll + v.second; }};

// speed
#define Code ios_base::sync_with_stdio(false);
#define By ios::sync_with_stdio(0);
#define Sumfi cout.tie(NULL);

// alias
using ll = long long;
using ld = long double;
using ull = unsigned long long;

// constants
const ld PI = acosl(-1.0); /* pi */
const ll INF = 1e18;
const ld EPS = 1e-15;
const ll MAX_N = 202020;
const ll mod = 998244353;

// typedef
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef vector<pll> vpll;
typedef array<int,3> ai3;
typedef array<ll,3> all3;
typedef array<ll,4> all4;
typedef array<ll,5> all5;
typedef vector<all3> vall3;
typedef vector<all4> vall4;
typedef vector<all5> vall5;
typedef pair<ld, ld> pld;
typedef vector<pld> vpld;
typedef vector<ld> vld;
typedef vector<ll> vll;
typedef vector<ull> vull;
typedef vector<vll> vvll;
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef vector<bool> vb;
typedef deque<ll> dqll;
typedef deque<pll> dqpll;
typedef pair<string, string> pss;
typedef vector<pss> vpss;
typedef vector<string> vs;
typedef vector<vs> vvs;
typedef unordered_set<ll> usll;
typedef unordered_set<pll, PairHash> uspll;
typedef unordered_map<ll, ll> umll;
typedef unordered_map<pll, ll, PairHash> umpll;

// macros
#define precision(x) cout<<fixed;cout.precision(x);
#define rep(i,m,n) for(ll i=m;i<n;i++)
#define rrep(i,m,n) for(ll i=n;i>=m;i--)
#define all(a) begin(a), end(a)
#define rall(a) rbegin(a), rend(a)
#define uniq(a) sort(all(a)), a.erase(unique(all(a)),end(a))
#define ZERO(a) memset(a,0,sizeof(a))
#define MINUS(a) memset(a,0xff,sizeof(a))
#define INF(a) memset(a,0x3f3f3f3f3f3f3f3fLL,sizeof(a))
#define NEGINF(a) memset(a,0xcf,sizeof(a))
#define ASCEND(a) iota(all(a),0)
#define sz(x) ll((x).size())
#define BIT(a,i) ((a>>i)&1)
#define BITSHIFT(a,i,n) (((a<<i) & ((1ll<<n) - 1)) | (a>>(n-i)))
#define MAXBIT(a) (64ll - __builtin_clzll(a) - 1ll)
#define MINBIT(a) (__builtin_ctzll(a))
#define pyes cout<<"Yes\n";
#define pno cout<<"No\n";
#define endl "\n"
#define pneg1 cout<<"-1\n";
#define ppossible cout<<"possible\n";
#define pimpossible cout<<"impossible\n";
#define TC(x) cout<<"Case #"<<x<<": ";
#define X first
#define Y second

// debug
void __print(int x) { cerr << x; }
void __print(long x) { cerr << x; }
void __print(long long x) { cerr << x; }
void __print(unsigned x) { cerr << x; }
void __print(unsigned long x) { cerr << x; }
void __print(unsigned long long x) { cerr << x; }
void __print(float x) { cerr << x; }
void __print(double x) { cerr << x; }
void __print(long double x) { cerr << x; }
void __print(char x) { cerr << '\'' << x << '\''; }
void __print(const char *x) { cerr << '\"' << x << '\"'; }
void __print(const string &x) { cerr << '\"' << x << '\"'; }
void __print(bool x) { cerr << (x ? "true" : "false"); }
template <typename A>
void __print(const A &x);
template <typename A, typename B>
void __print(const pair<A, B> &p);
template <typename... A>
void __print(const tuple<A...> &t);
template <typename T>
void __print(stack<T> s);
template <typename T>
void __print(queue<T> q);
template <typename T, typename... U>
void __print(priority_queue<T, U...> q);
template <typename A>
void __print(const A &x) {
bool first = true;
cerr << '{';
for (const auto &i : x) {
cerr << (first ? "" : ","), __print(i);
first = false;
}
cerr << '}';
}
template <typename A, typename B>
void __print(const pair<A, B> &p) {
cerr << '(';
__print(p.first);
cerr << ',';
__print(p.second);
cerr << ')';
}
template <typename... A>
void __print(const tuple<A...> &t) {
bool first = true;
cerr << '(';
apply([&first](const auto &...args) { ((cerr << (first ? "" : ","), __print(args), first = false), ...); }, t);
cerr << ')';
}
template <typename T>
void __print(stack<T> s) {
vector<T> debugVector;
while (!s.empty()) {
T t = s.top();
debugVector.push_back(t);
s.pop();
}
reverse(debugVector.begin(), debugVector.end());
__print(debugVector);
}
template <typename T>
void __print(queue<T> q) {
vector<T> debugVector;
while (!q.empty()) {
T t = q.front();
debugVector.push_back(t);
q.pop();
}
__print(debugVector);
}
template <typename T, typename... U>
void __print(priority_queue<T, U...> q) {
vector<T> debugVector;
while (!q.empty()) {
T t = q.top();
debugVector.push_back(t);
q.pop();
}
__print(debugVector);
}
void _print() { cerr << "]\n"; }
template <typename Head, typename... Tail>
void _print(const Head &H, const Tail &...T) {
__print(H);
if (sizeof...(T))
cerr << ", ";
_print(T...);
}
#ifndef ONLINE_JUDGE
#define debug(...) cerr << "Line:" << __LINE__ << " [" << #__VA_ARGS__ << "] = ["; _print(__VA_ARGS__);
#else
#define debug(...)
#endif

// utility functions
template <typename T>
void print(T &&t) { cout << t << "\n"; }
template<typename T>
void printv(vector<T>v){ll n=v.size();rep(i,0,n){cout<<v[i];if(i+1!=n)cout<<' ';}cout<<endl;}
template<typename T>
void printvv(vector<vector<T>>v){ll n=v.size();rep(i,0,n)printv(v[i]);}
template<typename T>
void printvln(vector<T>v){ll n=v.size();rep(i,0,n)cout<<v[i]<<endl;}
void fileIO(string in = "input.txt", string out = "output.txt") {freopen(in.c_str(),"r",stdin); freopen(out.c_str(),"w",stdout);}
void hackercupIO(string in) {fileIO("/Users/hayoungsong/Downloads/" + in + ".txt", "/Users/hayoungsong/Downloads/" + in + "_solution.txt");}
void readf(string in) {freopen(("/Users/hayoungsong/Downloads/" + in).c_str(), "rt", stdin);}
template <typename... T>
void in(T &...a) { ((cin >> a), ...); }
template<typename T>
void in(vector<T>& v){rep(i,0,sz(v)) in(v[i]);}
template<typename T>
void in(deque<T>& v){rep(i,0,sz(v)) in(v[i]);}
template<typename T, typename U>
void in(pair<T,U>& A) {in(A.first, A.second);}
template<typename T, typename U>
void in(vector<pair<T,U>>& A) {rep(i,0,sz(A)) in(A[i]); }
template<typename T, std::size_t N>
void in(vector<array<T,N>>& A) {rep(i,0,sz(A)) rep(j,0,sz(A[i])) in(A[i][j]); }
template<typename T>
void in(vector<vector<T>>& A) {rep(i,0,sz(A)) in(A[i]);}

struct Combination {
vll fac, inv;
ll n, MOD;

ll modpow(ll n, ll x, ll MOD = mod) { if(!x) return 1; ll res = modpow(n,x>>1,MOD); res = (res * res) % MOD; if(x&1) res = (res * n) % MOD; return res; }

Combination(ll _n, ll MOD = mod): n(_n + 1), MOD(MOD) {
inv = fac = vll(n,1);
rep(i,1,n) fac[i] = fac[i-1] * i % MOD;
inv[n - 1] = modpow(fac[n - 1], MOD - 2, MOD);
rrep(i,1,n - 2) inv[i] = inv[i + 1] * (i + 1) % MOD;
}

ll fact(ll n) {return fac[n];}
ll nCr(ll n, ll r) {
if(n < r or n < 0 or r < 0) return 0;
return fac[n] * inv[r] % MOD * inv[n-r] % MOD;
}
};

struct Matrix {
ll r,c,MOD;
vvll matrix;
Matrix(ll r, ll c, ll v = 0, ll MOD = mod): r(r), c(c), matrix(vvll(r,vll(c,v))), MOD(MOD) {}
Matrix(vvll m, ll MOD = mod) : r(sz(m)), c(sz(m[0])), matrix(m), MOD(MOD) {}

vector<ll>& operator[](ll pos) {return matrix[pos];}
Matrix operator*(const Matrix& B) const {
Matrix res(r, B.c, 0,MOD);
rep(i,0,r) rep(j,0,B.c) rep(k,0,B.r) {
res[i][j] = (res[i][j] + matrix[i][k] * B.matrix[k][j] % MOD) % MOD;
}
return res;
}

Matrix copy() {
Matrix copy(r,c,0,MOD);
copy.matrix = matrix;
return copy;
}


Matrix pow(ll n) {
assert(r == c);
Matrix res(r,r, 0,MOD);
Matrix now = copy();
rep(i,0,r) res[i][i] = 1;
while(n) {
if(n & 1) res = res * now;
now = now * now;
n /= 2;
}
return res;
}

ll det() {
if(r == 1) return matrix[0][0];
if(r == 2) return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0];
ll res = 0;
rep(p,0,c) {
Matrix mat(c-1,c-1);
rep(i,1,r) rep(j,0,c) {
if(j == p) continue;
mat[i][j - (j >= p)] = matrix[i][j];
}
res += matrix[0][p] * (p & 1 ? -1 : 1) * mat.det();
}
return res;
}
};

// geometry data structures
template <typename T>
struct Point {
T y,x;
Point(T y, T x) : y(y), x(x) {}
Point(pair<T,T> p) : y(p.first), x(p.second) {}
Point() {}
void input() {cin>>y>>x;}
friend ostream& operator<<(ostream& os, const Point<T>& p) { os<<p.y<<' '<<p.x<<'\n'; return os;}
Point<T> operator+(Point<T>& p) {return Point<T>(y + p.y, x + p.x);}
Point<T> operator-(Point<T>& p) {return Point<T>(y - p.y, x - p.x);}
Point<T> operator*(ll n) {return Point<T>(y*n,x*n); }
Point<T> operator/(ll n) {return Point<T>(y/n,x/n); }
bool operator==(const Point<T> &a) {return x == a.x && y == a.y;}
bool operator!=(const Point<T> &a) {return x != a.x or y != a.y;}
bool operator<(const Point &other) const {if (x == other.x) return y < other.y;return x < other.x;}
Point<T> rotate(Point<T> center, ld angle) {
ld si = sin(angle * PI / 180.), co = cos(angle * PI / 180.);
ld y = this->y - center.y;
ld x = this->x - center.x;

return Point<T>(y * co - x * si + center.y, y * si + x * co + center.x);
}
ld distance(Point<T> other) {
T dy = abs(this->y - other.y);
T dx = abs(this->x - other.x);
return sqrt(dy * dy + dx * dx);
}

T norm() { return x * x + y * y; }
};

template<typename T>
struct Line {
Point<T> A, B;
Line(Point<T> A, Point<T> B) : A(A), B(B) {}
Line() {}

void input() {
A = Point<T>();
B = Point<T>();
A.input();
B.input();
}

T ccw(Point<T> &a, Point<T> &b, Point<T> &c) {
T res = a.x * b.y + b.x * c.y + c.x * a.y;
res -= (a.x * c.y + b.x * a.y + c.x * b.y);
return res;
}

bool on(Point<T> x) {
return ccw(A,x,B) == 0;
}

bool isIntersect(Line<T> o) {
T p1p2 = ccw(A,B,o.A) * ccw(A,B,o.B);
T p3p4 = ccw(o.A,o.B,A) * ccw(o.A,o.B,B);
if (p1p2 == 0 && p3p4 == 0) {
pair<T,T> p1(A.y, A.x), p2(B.y,B.x), p3(o.A.y, o.A.x), p4(o.B.y, o.B.x);
if (p1 > p2) swap(p2, p1);
if (p3 > p4) swap(p3, p4);
return p3 <= p2 && p1 <= p4;
}
return p1p2 <= 0 && p3p4 <= 0;
}

pair<bool,Point<ld>> intersection(Line<T> o) {
if(!this->intersection(o)) return {false, {}};
ld det = 1. * (o.B.y-o.A.y)*(B.x-A.x) - 1.*(o.B.x-o.A.x)*(B.y-A.y);
ld t = ((o.B.x-o.A.x)*(A.y-o.A.y) - (o.B.y-o.A.y)*(A.x-o.A.x)) / det;
return {true, {A.y + 1. * t * (B.y - A.y), B.x + 1. * t * (B.x - A.x)}};
}

//@formula for : y = ax + pre
//@return {a,pre};
pair<ld, ld> formula() {
T y1 = A.y, y2 = B.y;
T x1 = A.x, x2 = B.x;
if(y1 == y2) return {0, (ld)y1};
if(x1 == x2) return {INF, (ld)x1};
ld a = 1. * (y2 - y1) / (x2 - x1);
ld b = -x1 * a + y1;
return {a, b};
}
};

template<typename T>
struct Circle {
Point<T> center;
T radius;
Circle(T y, T x, T radius) : center(Point<T>(y,x)), radius(radius) {}
Circle(Point<T> center, T radius) : center(center), radius(radius) {}
Circle() {}

void input() {
center = Point<T>();
center.input();
cin>>radius;
}

bool circumference(Point<T> p) {
return (center.x - p.x) * (center.x - p.x) + (center.y - p.y) * (center.y - p.y) == radius * radius;
}

bool intersect(Circle<T> c) {
T d = (center.x - c.center.x) * (center.x - c.center.x) + (center.y - c.center.y) * (center.y - c.center.y);
return (radius - c.radius) * (radius - c.radius) <= d and d <= (radius + c.radius) * (radius + c.radius);
}

bool include(Circle<T> c) {
T d = (center.x - c.center.x) * (center.x - c.center.x) + (center.y - c.center.y) * (center.y - c.center.y);
return d <= radius * radius;
}

bool include(Point<T> p) {
T d = (center.x - p.x) * (center.x - p.x) + (center.y - p.y) * (center.y - p.y);
return d <= radius * radius;
}
};

ll __gcd(ll x, ll y) { return !y ? x : __gcd(y, x % y); }
all3 __exgcd(ll x, ll y) { if(!y) return {x,1,0}; auto [g,x1,y1] = __exgcd(y, x % y); return {g, y1, x1 - (x/y) * y1}; }
ll __lcm(ll x, ll y) { return x / __gcd(x,y) * y; }
ll modpow(ll n, ll x, ll MOD = mod) {if(x<0){return modpow(modpow(n,-x,MOD),MOD-2,MOD);}n%=MOD;ll res=1;while(x){if(x&1){res=res*n%MOD;}n=n*n%MOD;x>>=1;}return res;}
ll __xor(ll n) {return n%4==0?n:n%4==1?1:n%4==2?n+1:0;}
ll __rangexor(ll l, ll r) {return __xor(r)^__xor(l-1);}


vll adj[MAX_N];
ll sum[MAX_N], cost[MAX_N];
ll dfs0(vll& A, ll u, ll par) {
for(auto& v : adj[u]) {
if(v == par) continue;
sum[u] += dfs0(A,v,u) + A[v];
cost[u] += cost[v];
}
cost[u] += sum[u];
return sum[u];
}
ll solve(vpll& E, ll n, vll& A) {
rep(i,0,sz(E)) {
auto [u,v] = E[i];
u -= 1, v -= 1;
adj[u].push_back(v);
adj[v].push_back(u);
}
dfs0(A,0,-1);
ll res = LLONG_MAX, tot = accumulate(all(A),0ll);
queue<all3> q;
q.push({0,-1,0});
while(sz(q)) {
auto [u,par,psum] = q.front(); q.pop();
res = min(res, psum + cost[u]);
for(auto& v : adj[u]) {
if(v == par) continue;
q.push({v,u,cost[u] - cost[v] - A[v] - sum[v] + psum + (tot - sum[v] - A[v])});
}
}
return res;
}
int main() {
Code By Sumfi
precision(18)
ll tc = 1;
//in(tc);
rep(i,1,tc+1) {
ll n;
in(n);
vpll E(n-1); vll A(n);
in(E), in(A);
print(solve(E,n,A));
}
return 0;
}

Author: Song Hayoung
Link: https://songhayoung.github.io/2024/11/19/PS/AtCoder/abc348-e/
Copyright Notice: All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.