1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
| #include <bits/stdc++.h>
#pragma optimization_level 3 #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math,O3") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx") #pragma GCC optimize("Ofast") #pragma GCC target("avx,avx2,fma") #pragma GCC optimization ("unroll-loops")
using namespace std;
struct PairHash {inline std::size_t operator()(const std::pair<int, int> &v) const { return v.first * 31 + v.second; }};
#define Code ios_base::sync_with_stdio(false); #define By ios::sync_with_stdio(0); #define Sumfi cout.tie(NULL);
using ll = long long; using ld = long double; using ull = unsigned long long;
const ld PI = 3.14159265358979323846; const ll INF = 1e18; const ld EPS = 1. / 120.; const ll MAX_N = 202020; const ll mod = 998244353;
typedef pair<ll, ll> pll; typedef vector<pll> vpll; typedef array<ll,3> all3; typedef array<ll,5> all5; typedef vector<all3> vall3; typedef vector<all5> vall5; typedef vector<ld> vld; typedef vector<ll> vll; typedef vector<vll> vvll; typedef vector<int> vi; typedef pair<string, string> pss; typedef vector<pss> vpss; typedef vector<string> vs; typedef vector<vs> vvs; typedef unordered_set<ll> usll; typedef unordered_set<pll, PairHash> uspll; typedef unordered_map<ll, ll> umll; typedef unordered_map<pll, ll, PairHash> umpll;
#define rep(i,m,n) for(ll i=m;i<n;i++) #define rrep(i,m,n) for(ll i=n;i>=m;i--) #define all(a) begin(a), end(a) #define rall(a) rbegin(a), rend(a) #define ZERO(a) memset(a,0,sizeof(a)) #define MINUS(a) memset(a,0xff,sizeof(a)) #define INF(a) memset(a,0x3f3f3f3f3f3f3f3fLL,sizeof(a)) #define ASCEND(a) iota(all(a),0) #define sz(x) ll((x).size()) #define BIT(a,i) (a & (1ll<<i)) #define pyes cout<<"yes\n"; #define pno cout<<"no\n"; #define pneg1 cout<<"-1\n"; #define ppossible cout<<"Possible\n"; #define pimpossible cout<<"Impossible\n"; #define TC(x) cout<<"Case #"<<x<<": "; #define X first #define Y second
template <typename T> void print(T &&t) { cout << t << "\n"; } template<typename T> void printv(vector<T>v){ll n=v.size();rep(i,0,n)cout<<v[i]<<" ";cout<<"\n";} void fileIO() {freopen("input.txt","r",stdin); freopen("output.txt","w",stdout);} void hackerCupIO() {freopen("/Users/summerflower/Downloads/worklife_balance_chapter_1_input (1).txt", "r", stdin); freopen("/Users/summerflower/Downloads/solution.txt","w",stdout);} void readf() {freopen("", "rt", stdin);} template<typename T> void readv(vector<T>& v){rep(i,0,sz(v)) cin>>v[i];} template<typename T, typename U> void readp(pair<T,U>& A) {cin>>A.first>>A.second;} template<typename T, typename U> void readvp(vector<pair<T,U>>& A) {rep(i,0,sz(A)) readp(A[i]); } void readvall3(vall3& A) {rep(i,0,sz(A)) cin>>A[i][0]>>A[i][1]>>A[i][2];} void readvvll(vvll& A) {rep(i,0,sz(A)) readv(A[i]);}
struct Combination { vll fac, inv; ll n, MOD;
ll modpow(ll n, ll x, ll MOD = mod) { if(!x) return 1; ll res = modpow(n,x>>1,MOD); res = (res * res) % MOD; if(x&1) res = (res * n) % MOD; return res; }
Combination(ll _n, ll MOD = mod): n(_n + 1), MOD(MOD) { inv = fac = vll(n,1); rep(i,1,n) fac[i] = fac[i-1] * i % MOD; inv[n - 1] = modpow(fac[n - 1], MOD - 2, MOD); rrep(i,1,n - 2) inv[i] = inv[i + 1] * (i + 1) % MOD; }
ll fact(ll n) {return fac[n];} ll nCr(ll n, ll r) { if(n < r or n < 0 or r < 0) return 0; return fac[n] * inv[r] % MOD * inv[n-r] % MOD; } };
struct Matrix { ll r,c; vvll matrix; Matrix(ll r, ll c, ll v = 0): r(r), c(c), matrix(vvll(r,vll(c,v))) {}
Matrix operator*(const Matrix& B) const { Matrix res(r, B.c); rep(i,0,r) rep(j,0,B.c) rep(k,0,B.r) { res.matrix[i][j] = (res.matrix[i][j] + matrix[i][k] * B.matrix[k][j] % mod) % mod; } return res; } };
template <typename T> struct Point { T y,x; Point(T y, T x) : y(y), x(x) {} Point() {} void input() {cin>>y>>x;} friend ostream& operator<<(ostream& os, const Point<T>& p) { os<<p.y<<' '<<p.x<<'\n'; return os;} Point<T> operator+(Point<T>& p) {return Point<T>(y + p.y, x + p.x);} Point<T> operator-(Point<T>& p) {return Point<T>(y - p.y, x - p.x);} Point<T> operator*(ll n) {return Point<T>(y*n,x*n); } Point<T> operator/(ll n) {return Point<T>(y/n,x/n); }
Point<T> rotate(Point<T> center, ld angle) { ld si = sin(angle * PI / 180.), co = cos(angle * PI / 180.); ld y = this->y - center.y; ld x = this->x - center.x;
return Point<T>(y * co - x * si + center.y, y * si + x * co + center.x); } };
template<typename T> struct Circle { Point<T> center; T radius; Circle(T y, T x, T radius) : center(Point<T>(y,x)), radius(radius) {} Circle() {}
void input() { center = Point<T>(); center.input(); cin>>radius; }
bool circumference(Point<T> p) { return (center.x - p.x) * (center.x - p.x) + (center.y - p.y) * (center.y - p.y) == radius * radius; }
bool intersect(Circle<T> c) { T d = (center.x - c.center.x) * (center.x - c.center.x) + (center.y - c.center.y) * (center.y - c.center.y); return (radius - c.radius) * (radius - c.radius) <= d and d <= (radius + c.radius) * (radius + c.radius); }
bool include(Circle<T> c) { T d = (center.x - c.center.x) * (center.x - c.center.x) + (center.y - c.center.y) * (center.y - c.center.y); return d <= radius * radius; } };
ll __gcd(ll x, ll y) { return !y ? x : __gcd(y, x % y); } all3 __exgcd(ll x, ll y) { if(!y) return {x,1,0}; auto [g,x1,y1] = __exgcd(y, x % y); return {g, y1, x1 - (x/y) * y1}; } ll __lcm(ll x, ll y) { return x / __gcd(x,y) * y; } ll modpow(ll n, ll x, ll MOD = mod) { n%=MOD; if(!x) return 1; ll res = modpow(n,x>>1,MOD); res = (res * res) % MOD; if(x&1) res = (res * n) % MOD; return res; }
bool solve(vll A, ll k) { unordered_map<ll,vll> mp; rep(i,0,sz(A)) mp[i%k].push_back(A[i]); sort(all(A)); rep(i,0,k) sort(rall(mp[i])); rep(i,0,sz(A)) { if(mp[i%k].back() != A[i]) return false; mp[i%k].pop_back(); } return true; }
int main() { Code By Sumfi cout.precision(12); ll tc = 1; cin>>tc; rep(i,1,tc+1) { ll n,k; cin>>n>>k; vll A(n); readv(A); if(solve(A,k)) pyes else pno } return 0; }
|