2198. Number of Single Divisor Triplets
You are given a 0-indexed array of positive integers nums. A triplet of three distinct indices (i, j, k) is called a single divisor triplet of nums if nums[i] + nums[j] + nums[k] is divisible by exactly one of nums[i], nums[j], or nums[k].
Return the number of single divisor triplets of nums.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 class Solution { unordered_map<int , int > freq; bool valid (vector<int >& pick) { long long sum = pick[0 ] + pick[1 ] + pick[2 ]; long long pass = 0 ; for (int i = 0 ; i < 3 ; i++) pass += sum % pick[i] == 0 ; return pass == 1 ; } long long helper (vector<int >& A, vector<int >& pick) { if (pick.size () == 3 ) { if (!valid (pick)) return 0 ; long long a = freq[pick[0 ]]; long long b = freq[pick[1 ]]; long long c = freq[pick[2 ]]; if (pick[0 ] == pick[1 ]) b--; if (pick[0 ] == pick[2 ] and pick[1 ] != pick[2 ]) c--; if (pick[1 ] == pick[2 ] and pick[0 ] != pick[2 ]) c--; if (pick[0 ] == pick[1 ] and pick[0 ] == pick[2 ]) c -= 2 ; if (a < 0 or b < 0 or c < 0 ) return 0 ; return a * b * c; } else { long long res = 0 ; for (int i = 0 ; i < A.size (); i++) { pick.push_back (A[i]); res += helper (A,pick); pick.pop_back (); } return res; } } public : long long singleDivisorTriplet (vector<int >& nums) { vector<int > A; for (auto n : nums) { if (freq[n]++ == 0 ) A.push_back (n); } return helper (A,vector <int >() = {}); } };