[LeetCode] Maximum Binary Tree II

998. Maximum Binary Tree II

A maximum tree is a tree where every node has a value greater than any other value in its subtree.

You are given the root of a maximum binary tree and an integer val.

Just as in the previous problem, the given tree was constructed from a list a (root = Construct(a)) recursively with the following Construct(a) routine:

  • If a is empty, return null.
  • Otherwise, let a[i] be the largest element of a. Create a root node with the value a[i].
  • The left child of root will be Construct([a[0], a[1], …, a[i - 1]]).
  • The right child of root will be Construct([a[i + 1], a[i + 2], …, a[a.length - 1]]).
  • Return root.

Note that we were not given a directly, only a root node root = Construct(a).

Suppose b is a copy of a with the value val appended to it. It is guaranteed that b has unique values.

Return Construct(b).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
vector<int> helper(TreeNode* node) {
if(!node) return {};
auto res = helper(node->left);
res.push_back(node->val);
for(auto& r : helper(node->right))
res.push_back(r);
return res;
}
TreeNode* helper(vector<int>& A, int l, int r) {
if(l >= r) return nullptr;
int ma = max_element(begin(A) + l, begin(A) + r) - begin(A);
TreeNode* node = new TreeNode(A[ma]);
node->left = helper(A, l, ma);
node->right = helper(A, ma + 1, r);
return node;
}
public:
TreeNode* insertIntoMaxTree(TreeNode* root, int val) {
auto A = helper(root);
A.push_back(val);
return helper(A, 0, A.size());
}
};
Author: Song Hayoung
Link: https://songhayoung.github.io/2022/06/28/PS/LeetCode/maximum-binary-tree-ii/
Copyright Notice: All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.