775. Global and Local Inversions
You are given an integer array nums of length n which represents a permutation of all the integers in the range [0, n - 1].
The number of global inversions is the number of the different pairs (i, j) where:
- 0 <= i < j < n
- nums[i] > nums[j]
The number of local inversions is the number of indices i where:
- 0 <= i < n - 1
- nums[i] > nums[i + 1]
Return true if the number of global inversions is equal to the number of local inversions.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| class Solution { int fenwick[101010]; int query(int n) { int res = 0; while(n) { res += fenwick[n]; n -= n & -n; } return res; } void update(int n) { while(n < 101010) { fenwick[n] += 1; n += n & -n; } } public: bool isIdealPermutation(vector<int>& nums) { int g = 0, l = 0, n = nums.size(); memset(fenwick, 0, sizeof fenwick); for(int i = 0; i < n; i++) { if(i + 1 != n) { if(nums[i] > nums[i + 1]) l++; } g += i - query(nums[i] + 1); if(g >= n) return false; update(nums[i] + 1); } return g == l; } };
|