1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
| class BinaryTree { public: int value; BinaryTree *left; BinaryTree *right;
BinaryTree(int value) { this->value = value; left = nullptr; right = nullptr; } };
struct Sub { int mi, ma, count; bool valid; }; int res;
Sub helper(BinaryTree* node) { if(!node->left and !node->right) { res = max(res, 1); return {node->value, node->value, 1, true}; } if(node->left and node->right) { auto lsub = helper(node->left); auto rsub = helper(node->right); if(lsub.valid and rsub.valid and lsub.ma < node->value and node->value <= rsub.mi) { res = max(res, lsub.count + rsub.count + 1); return {lsub.mi, rsub.ma, lsub.count + rsub.count + 1, true}; } else return {INT_MAX, INT_MIN, -1, false}; } if(node->left) { auto lsub = helper(node->left); if(lsub.valid and lsub.ma < node->value) { res = max(res, lsub.count + 1); return {lsub.mi, node->value, lsub.count + 1, true}; } else return {INT_MAX, INT_MIN, -1, false}; } if(node->right) { auto rsub = helper(node->right); if(rsub.valid and node->value <= rsub.mi) { res = max(res, rsub.count + 1); return {node->value, rsub.ma, rsub.count + 1, true}; } else return {INT_MAX, INT_MIN, -1, false}; } }
int largestBstSize(BinaryTree *tree) { res = -1; helper(tree); return res; }
|