Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called “Ring Buffer”.
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
Implementation the MyCircularQueue class:
- MyCircularQueue(k) Initializes the object with the size of the queue to be k.
- int Front() Gets the front item from the queue. If the queue is empty, return -1.
- int Rear() Gets the last item from the queue. If the queue is empty, return -1.
- boolean enQueue(int value) Inserts an element into the circular queue. Return true if the operation is successful.
- boolean deQueue() Deletes an element from the circular queue. Return true if the operation is successful.
- boolean isEmpty() Checks whether the circular queue is empty or not.
- boolean isFull() Checks whether the circular queue is full or not.
You must solve the problem without using the built-in queue data structure in your programming language.
1 | class MyCircularQueue { |
1 | class MyCircularQueue { |