101. Symmetric Tree
Given the root of a binary tree, check whether it is a mirror of itself (i.e., symmetric around its center).
Follow up: Could you solve it both recursively and iteratively?
- Iteratively solution
- Time : O(n)
- Space : O(n)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
|
class Solution { public: bool isSymmetric(TreeNode* root) { queue<TreeNode*> left, right; left.push(root->left); right.push(root->right);
while(!left.empty() and !right.empty()) { auto l = left.front(); left.pop(); auto r = right.front(); right.pop();
if(!l and !r) continue; if((!l and r) or (!r and l) or (l->val != r->val)) return false;
left.push(l->left); left.push(l->right); right.push(r->right); right.push(r->left);
} return left.empty() and right.empty(); } };
|
- Recursively solution
- Time : O(n)
- Space : O(1) but use call stack O(h)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
| /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { bool solution(TreeNode* l, TreeNode* r) { if(!l and !r) return true; if((!l and r) or (!r and l) or (l->val != r->val)) return false; return solution(l->left, r->right) and solution(l->right, r->left); } public: bool isSymmetric(TreeNode* root) { return solution(root->left, root->right); } };
|