1091. Shortest Path in Binary Matrix
Given an n x n binary matrix grid, return the length of the shortest clear path in the matrix. If there is no clear path, return -1.
A clear path in a binary matrix is a path from the top-left cell (i.e., (0, 0)) to the bottom-right cell (i.e., (n - 1, n - 1)) such that:
- All the visited cells of the path are 0.
- All the adjacent cells of the path are 8-directionally connected (i.e., they are different and they share an edge or a corner).
The length of a clear path is the number of visited cells of this path.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
| class Solution { public: int shortestPathBinaryMatrix(vector<vector<int>>& grid) { int dx[8]{-1,0,1,1,1,0,-1,-1}, dy[8]{-1,-1,-1,0,1,1,1,0}, n(grid.size()); if(grid[n - 1][n - 1] || grid[0][0]) return -1; queue<pair<int, int>> q; q.push({0, 0}); grid[0][0] = 1; while(!q.empty() && !grid[n-1][n-1]) { auto p = q.front(); q.pop(); for(int i = 0; i < 8; i++) { int ny(p.first + dy[i]), nx(p.second + dx[i]); if(0 <= ny && ny < n && 0 <= nx && nx < n && !grid[ny][nx]) { grid[ny][nx] = grid[p.first][p.second] + 1; q.push({ny, nx}); } } } return grid[n-1][n-1] ? grid[n-1][n-1] : -1; } };
|