[Security] AES

AES

Rijndael 알고리즘을 기반으로하는 AES 암호화 알고리즘은 국제 표준으로 자리잡은 대칭형 암호화 알고리즘이다. AES는 128, 192, 256비트로 3가지 종류의 가변 크기 길이를 제공해준다.

동작원리

AES의 암호화 동작 원리는 크게 4가지 부분으로 나눌 수 있다. 4가지 부분을 합쳐서 Round라고 부르고 가변 크기 길이에 따라 여러 라운드를 반복하게 된다. 마지막 라운드는 Mix Columns를 수행하지 않는다.

복호화에는 암호화의 반대 순서로 진행되며 이를 위해 Inv. Shift Row, Inv. Sub Bytes, Inv. Mix Columns의 과정이 필요하다.

AES

Sub Bytes

S-Box를 통해 Value를 변환하는 과정이다
다음과 같은 S-box 테이블을 참조하여 바이트값 a41d로 치환된다

sbox

Shift Rows

Shift Rows는 바이트 배열을 Shift하는 과정이다
다음과 같은 형태로 Shift를 진행한다

shift rows

Mix Columns

Mix Columns는 행렬과 곱연산을 통해 데이터를 변환한다
복호화시에는 역행렬로 복호화를 수행한다

mix columns

Add Round Key

Add Round Key는 Round Key와 ^연산을 진행한다
XOR연산 특성상 Invert는 필요없다

add round key


구현

구현한 AES 코드는 다음과 같다

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
#include <stdio.h>
#include <stdint.h>
#include <memory.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#define ROTL8(x,shift) ((uint8_t) ((x) << (shift)) | ((x) >> (8 - (shift))))
#define xtime(x) ((x<<1) ^ (((x>>7) & 1) * 0x1b))
#define Multiply(x,y) (((y & 1) * x) ^ ((y>>1 & 1) * xtime(x)) ^ ((y>>2 & 1) * xtime(xtime(x))) ^ ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))))
#define Nb 4
int Log_Flag;
int Nr = 0;
int Nk = 0;
unsigned char in[16], out[16], state[4][4];
unsigned char RoundKey[240];
unsigned char Key[32];
int Rcon[255] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb };

void flushall(){
fflush(stdin);
getchar();
}


int get_cpu_info(int num){
char buffer[1024];
size_t size=sizeof(buffer);
if (sysctlbyname("machdep.cpu.brand_string", &buffer, &size, NULL, 0) < 0) {
perror("sysctl");
return 0;
}
return buffer[num%size];
}

/*
* Initilizing Sbox Table
*/
void initialize_aes_sbox(uint8_t sbox[256]) {
printf("Initialize SBOX\n");
uint8_t p = 1, q = 1;
do {
p = p ^ (p << 1) ^ (p & 0x80 ? 0x1B : 0);
q ^= q << 1;
q ^= q << 2;
q ^= q << 4;
q ^= q & 0x80 ? 0x09 : 0;
uint8_t xformed = q ^ ROTL8(q, 1) ^ ROTL8(q, 2) ^ ROTL8(q, 3) ^ ROTL8(q, 4);
sbox[p] = xformed ^ 0x63;
} while (p != 1);
sbox[0] = 0x63;
}

/*
* return Sbox Value
*/
int getSboxValue(int num){
static uint8_t SBOX[256] = {};
if(!SBOX[0x00]) initialize_aes_sbox(SBOX);
return SBOX[num];
}

int getrSboxValue(int num){
static const uint8_t RSBOX[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
return RSBOX[num];
}
/*
* Produce RoundKey witch uses in each round encryption
*/
void KeyExpansion(){
if(Log_Flag)
printf("Key Expension\n");
int i, j;
unsigned char temp[4], k;
// First Round Key is the key it self
for(i = 0; i < Nk; i++){
RoundKey[i<<2] = Key[i<<2];
RoundKey[(i<<2)+1] = Key[(i<<2)+1];
RoundKey[(i<<2)+2] = Key[(i<<2)+2];
RoundKey[(i<<2)+3] = Key[(i<<2)+3];
}

// All other Round Key is caculate from itself
while(i < Nb * (Nr + 1)){
for(j = 0; j < 4; j++){
temp[j] = RoundKey[((i-1)<<2)+j];
}
if(!(i % Nk)){
// Rotate function()
// [a0, a1, a2, a3] to [a1, a2, a3, a0]
k = temp[0];
temp[0] = temp[1];
temp[1] = temp[2];
temp[2] = temp[3];
temp[3] = k;

// Sub-bytes function()
// mapping value with Sbox Table
temp[0] = getSboxValue(temp[0]);
temp[1] = getSboxValue(temp[1]);
temp[2] = getSboxValue(temp[2]);
temp[3] = getSboxValue(temp[3]);

temp[0] ^= Rcon[i/Nk];
}
else if(Nk > 6 && (!(i % Nk)^4)){
// Sub-bytes function()
// mapping value with Sbox Table
temp[0] = getSboxValue(temp[0]);
temp[1] = getSboxValue(temp[1]);
temp[2] = getSboxValue(temp[2]);
temp[3] = getSboxValue(temp[3]);
}

RoundKey[(i<<2)] = RoundKey[(i-Nk)<<2] ^ temp[0];
RoundKey[(i<<2) + 1] = RoundKey[((i-Nk)<<2) + 1] ^ temp[1];
RoundKey[(i<<2) + 2] = RoundKey[((i-Nk)<<2) + 2] ^ temp[2];
RoundKey[(i<<2) + 3] = RoundKey[((i-Nk)<<2) + 3] ^ temp[3];
i++;
}
}
/*
* Add Round Key
*/
void AddRoundKey(int round){
if(Log_Flag) {
printf("Add Round Key\n");
printf("Round :: %d\nKey :: ", round);
}
int i, j;
for (i = 0; i<4; i++){
for (j = 0; j<4; j++){
state[j][i] ^= RoundKey[round * (Nb<<2) + i * Nb + j];
if(Log_Flag) printf("%2x ",RoundKey[round * (Nb<<2) + i * Nb + j]);
}
}
if(Log_Flag) printf("\n");
}

/*
* Sub bytes
* mapping values with Sbox Table
*/
void SubBytes(){
int i, j;
for(i = 0; i < 4; i++)
for( j = 0; j < 4; j++)
state[i][j] = getSboxValue(state[i][j]);
}

/*
* Reverse Sub bytes
* mapping values with reverse Sbox Table
*/
void rSubBytes(){
int i, j;
for (i = 0; i<4; i++){
for (j = 0; j<4; j++){
state[i][j] = getrSboxValue(state[i][j]);
}
}
}

/*
* Shift Rows
* Shift values
*/
void ShiftRows(){
unsigned char temp;

temp = state[1][0];
state[1][0] = state[1][1];
state[1][1] = state[1][2];
state[1][2] = state[1][3];
state[1][3] = temp;

temp = state[2][0];
state[2][0] = state[2][2];
state[2][2] = temp;
temp = state[2][1];
state[2][1] = state[2][3];
state[2][3] = temp;

temp = state[3][3];
state[3][3] = state[3][2];
state[3][2] = state[3][1];
state[3][1] = state[3][0];
state[3][0] = temp;

}

/*
* reverse Shift Rows
*/
void rShiftRows(){
unsigned char temp;

// Rotate first row 1 columns to right
temp = state[1][3];
state[1][3] = state[1][2];
state[1][2] = state[1][1];
state[1][1] = state[1][0];
state[1][0] = temp;

// Rotate second row 2 columns to right
temp = state[2][0];
state[2][0] = state[2][2];
state[2][2] = temp;

temp = state[2][1];
state[2][1] = state[2][3];
state[2][3] = temp;

// Rotate third row 3 columns to right
temp = state[3][0];
state[3][0] = state[3][1];
state[3][1] = state[3][2];
state[3][2] = state[3][3];
state[3][3] = temp;
}


/*
* Mix Columns
*/
void MixColumns(){
int i;
unsigned char Tmp, Tm, t;
for (i = 0; i<4; i++){
t = state[0][i];
Tmp = state[0][i] ^ state[1][i] ^ state[2][i] ^ state[3][i];
Tm = state[0][i] ^ state[1][i]; Tm = xtime(Tm); state[0][i] ^= Tm ^ Tmp;
Tm = state[1][i] ^ state[2][i]; Tm = xtime(Tm); state[1][i] ^= Tm ^ Tmp;
Tm = state[2][i] ^ state[3][i]; Tm = xtime(Tm); state[2][i] ^= Tm ^ Tmp;
Tm = state[3][i] ^ t; Tm = xtime(Tm); state[3][i] ^= Tm ^ Tmp;
}
}

/*
* reverse Mix Columns
*/
void rMixColumns(){
int i;
unsigned char a, b, c, d;
for (i = 0; i<4; i++){

a = state[0][i];
b = state[1][i];
c = state[2][i];
d = state[3][i];

state[0][i] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
state[1][i] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
state[2][i] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
state[3][i] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
}
}

/*
* Cipher is the main function that encrypts the PlainText.
*/
void Cipher(){
int i, j, round = 0;
//Copy the input PlainText to state array.
for (i = 0; i<4; i++)
for (j = 0; j<4; j++)
state[j][i] = in[i * 4 + j];

// Add the First round key to the state before starting the rounds.
AddRoundKey(0);
// There will be rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for (round = 1; round<Nr; round++)
{
SubBytes();
ShiftRows();
MixColumns();
AddRoundKey(round);
}
// The last is given below.
// The MixColumns function is not here in the last round.
SubBytes();
ShiftRows();
AddRoundKey(Nr);
// The encryption process is over.
// Copy the state array to output array.
for (i = 0; i<4; i++)
for (j = 0; j<4; j++)
out[i * 4 + j] = state[j][i];
}

void rCipher(){
int i, j, round = 0;

//Copy the input CipherText to state array.
for (i = 0; i<4; i++)
for (j = 0; j<4; j++)
state[j][i] = in[i * 4 + j];

// Add the First round key to the state before starting the rounds.
AddRoundKey(Nr);

// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for (round = Nr - 1; round>0; round--){
rShiftRows();
rSubBytes();
AddRoundKey(round);
rMixColumns();
}

// The last round is given below.
// The MixColumns function is not here in the last round.
rShiftRows();
rSubBytes();
AddRoundKey(0);

// The decryption process is over.
// Copy the state array to output array.
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
out[i * 4 + j] = state[j][i];
}

void Encryption(){
int i;
// Receive the length of key here.
while (Nr != 128 && Nr != 192 && Nr != 256){
printf("Enter the length of Key(128, 192 or 256 only): ");
scanf("%d", &Nr);
}
// Calculate Nk and Nr from the received value.
Nk = Nr / 32;
Nr = Nk + 6;
// Part 1 is for demonstrative purpose. The key and plaintext are given in the program itself.
// Part 1: ********************************************************
// The array temp stores the key.
// The array temp2 stores the plaintext.
unsigned char temp[16] = { 0x00 ,0x01 ,0x02 ,0x03 ,0x04 ,0x05 ,0x06 ,0x07 ,0x08 ,0x09 ,0x0a ,0x0b ,0x0c ,0x0d ,0x0e ,0x0f };
unsigned char temp2[16] = { 0x00 ,0x11 ,0x22 ,0x33 ,0x44 ,0x55 ,0x66 ,0x77 ,0x88 ,0x99 ,0xaa ,0xbb ,0xcc ,0xdd ,0xee ,0xff };
// Copy the Key and PlainText
for (i = 0; i<Nk * 4; i++){
Key[i] = temp[i];
in[i] = temp2[i];
}
// *********************************************************
// Uncomment Part 2 if you need to read Key and PlainText from the keyboard.
// Part 2: ********************************************************

//Clear the input buffer
//Recieve the Key from the user
flushall();
printf("Build the Key in hexadecimal: ");
for (i = 0; i<Nk * 4; i++) {
Key[i] = get_cpu_info(i);
printf("%x ",Key[i]);
}
printf("\n");

printf("Enter the PlainText in hexadecimal: ");
for (i = 0; i<Nb * 4; i++) {
scanf("%c",&in[i]);
}

// ********************************************************
// The KeyExpansion routine must be called before encryption.
KeyExpansion();
// The next function call encrypts the PlainText with the Key using AES algorithm.
Cipher();
// Output the encrypted text.
printf("\nText after encryption:\n");
for (i = 0; i<Nk * 4; i++)
printf("%2x ", out[i]);

printf("\n\n");
}

void Decryption(){
int i;
flushall();
printf("\nThe CipherText in hexadecimal: ");
memcpy(in,out,sizeof(in));
for(i=0;i<Nb*4;i++)
printf("%x ",in[i]);
printf("\n");

//The Key-Expansion routine must be called before the decryption routine.
//KeyExpansion();

// The next function call decrypts the CipherText with the Key using AES algorithm.
rCipher();

// Output the decrypted text.
printf("\nText after decryption : \n");
for (i = 0; i<Nb<<2; i++){
printf("%c ", out[i]);
}
printf("\n\n");
}
int main(void){
printf("[Show Log ? 1 : 0 ] : ");
scanf("%d",&Log_Flag);
Encryption();
Decryption();
return 0;
}

참조

http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://www.crocus.co.kr/1230

Author: Song Hayoung
Link: https://songhayoung.github.io/2020/07/12/Security/aes/
Copyright Notice: All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.